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Chapter 3: Calculus Tools 
 
Prerequisite: Chapter 1 

3.1 Logarithms and Exponents  

By definition, the log function to the base b is the function such that alogc b=  if  .abc =   It is a 
very useful function in statistical reasoning, since it takes multiplication into addition as we will 
see in Equation (3.1).  We generally use the notation log to imply a base of 10, i. 
e. alogalog 10= and we use the notation ln to imply a base of Euler's e (2.7182812…), that is 

.alogaln e=   Some rules of logarithms follow: 
 
 ln ab = ln a + ln b (3.1) 
 

 blnaln
b
aln −=  (3.2) 

 
 alnbaln b =  (3.3)   
 
 aeln a =  (3.4) 
 
 ln e = 1 (3.5) 
 
 ln 1 = 0 (3.6) 
 
As for exponents, we have the following rules: 
 
 cbcb aaa +=⋅  (3.7) 
 
 aa 2/1 =  (3.8) 
 
From a purely typographical point of view, it is sometimes more convenient to use the notation 
exp(a) = ea. 

3.2 A Review of Scalar Calculus 
 
Consider the problem of calculating the slope of f(x) = x2.  Unlike the equation for a line, the slope 
of the f(x) function changes depending on the value of x.  However, at a small enough segment of 
the function, fitting a straight line would be reasonable.  A picture of the situation is given below:  
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The slope is composed of the amount of change in the y axis (the rise) divided by the change in 
the x axis (the run).  The fraction looks like 
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As we reduce Δx smaller and smaller, making a closer approximation to the slope, it converges on 
the value 2x.  The derivative is the slope of a function at a point.  There are two notations in 
common use.  Thus we could write dx2/dx = 2x or f′(x) = 2x. In this book we will generally stick 
to the first way of writing the derivative.   
 
More generally, for a function consisting of the power of a variable,  
 

 .xm
dx

dx 1m
m

−⋅=  (3.9) 

 
For the function f(x) = c where c is a constant, we would have  
 
 d(c)/dx = 0  (3.10) 
 
and for f(x) = cx,  
 
 d(cx)/dx = c.   (3.11) 
 
The derivative of a sum is equal to the sum of the derivatives as we now see: 
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The exponential function to the base e has the interesting property that  
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 x
x

e
dx
de

=  (3.13) 

 
And we finish up this review by noting that for compound functions, such as g[f(x)], we can 
employ the chain rule which states that  
 

 .
dx

)x(df
)x(df
)]x(f[dg

dx
)]x(f[dg

⋅=  (3.14) 

 
Now, taking the chain rule into account we can state 
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⋅= . (3.15) 

 

3.3  The Scalar Function of a Vector 
 
We can now define the derivative of a function with respect to a whole vector of "independent" 
variables, ./)(f xx ′∂′∂  Note that the function of the vector, f(x'), is a scalar.  To begin, we will start 
with the constant function, that is, f(x') = c where c is a constant (scalar).  The derivative of this 
function with respect to the row vector x' is itself a row vector with the same order as x'.  That is 
because we need a derivative of the function with respect to each element of the vector.  This 
vector derivative is called a partial derivative which means that as we take the derivative of the 
function with respect xi, each of the other elements of x are treated as constants.   
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The derivative of the function with respect to xi is 0, and i runs from 1 to m.  Thus a vector 
derivative is created.  For the linear combination a'x we have 
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 [ ] .aaa m21 a′== L  (3.17) 
 
Another important result is the derivative of a quadratic form [Equation (1.20)].  In the equation 
below, we assume that A is a symmetric m · m matrix so that  
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 Ax
x
Axx ′′=
′∂

′∂ 2  (3.18) 

 
with A' = A.   
 
We now state the rule that the derivative of the transpose is equal to the transpose of the 
derivative, that is 
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From time to time we will need to use the second order derivative of a scalar function.  It may be 
the case that the ∂f/∂xi changes as a function of xj, for example.   The slope of the ∂f/∂xi 
with respect to xj, in other words the derivative of the derivative, is written as  
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There are many uses of this second order derivative including nonlinear estimation [Section (3.9)], 
Maximum Likelihood parameter estimation [Section (3.10)], as well as determining whether, 
when the first order derivative is 0, we are at a maximum or minimum.   

3.4 Derivative of Multiple Functions with Respect to a Vector 
 
Suppose we have the linear system,  
 
 1mmn1n xAy = . 
 
Now 
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To summarize,  
 

 mn
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 (3.20) 

 
with each of the n rows of ∂y/∂x' a different function of x', y1, y2, …, yn and each of the m columns 
of ∂y/∂x' referring to a different independent variable: x1, x2, …, xm.  In other words, element i, j of 
∂y/∂x' is of ∂yi/∂xj = aij.   
 
Of course given Equation (3.19), 
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3.5 Eigen Structure for Symmetric Matrices 
 
Consider the p by 1 random vector y, consisting of p observations taken on a randomly chosen 
case.  The covariance matrix S, which is the covariance matrix for p variables [that is, V(y) = S], is 
a symmetric matrix.  I wish to create a linear combination  
 
 u = x′y,  (3.21)  
 
such that q = V(u) is maximized.  In this way I can replace the p elements of y with a single 
number that behaves as much as possible like the original p values.   The problem can be written 
as  
 

 .
qMax
x

Sxx'=
 (3.22)  

 
The notation here can be read, "Max q over all values of x."  One easy way to do this would be to 
pick x = [∞ ∞  ⋅⋅⋅  ∞]′ but this would be completely uninteresting.  Instead we will normalize x, or 
constrain it so that we do not fall into a solution with a series of infinities.  The reasoning behind 
how we maximize a function under constraints was introduced into mathematics by Lagrange.  We 
can arbitrarily fix  
 

 1x
p

j

2
j =′=∑ xx  or set 

 
 x′x - 1 = 0 . (3.23) 
 
This will allow us to focus on the pattern in the x vector that allows us to extract the maximum 
variance from S.  Geometrically, we can represent the situation as in the graph below:  
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Rather than trying to maximize f2(x), we will maximize f2(x) subject to f1(x).  This is equivalent to 
maximizing f2(x) - f1(x), or finding the principal axis of the ellipse in the figure.  The problem can 
now be written as  
 

 [ ] [ ])1(Max)(f)(fMax
12 −′λ−′=λ− xxSxx

x
xx

x
 (3.24) 

 
Note the sudden and mysterious appearance of the scalar λ!  This creature is called a Lagrange 
multiplier. But where did it come from?  Indeed.  In defense of this equation, note that f2(x) = x′x - 
1 = 0.  The scalar λ does not change the equation one iota, or better; one lambda.  The function 
f2(x), as well as λ, are doomed to vanish.  In short, λ is a mathematical throw-away.  Using the 
rule for the derivative of a quadratic form [Equation (3.18)], along with some help from Equation 
(3.19), we see that  
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and that  
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In that case, to maximize (3.24) we set  
 

 [ ] 0xxSxx
x

=−′λ−′
∂
∂ )1(                

 
 0IxSx =λ− 22 .  (3.26) 
 
We can simplify further as below, 
 
 Sx = λx, (3.27) 
 
where λ is now "acting like" S. Putting λ in Equation (3.24) is certainly legal since x′x - 1 will be 
zero anyway. But what is it doing still hanging around in Equation (3.27)? We promised it would 

f1(x) = x′x – 1 = 0

f2(x) = x′Cx = q
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go away, didn't we?  What is λ anyway?  Before we can answer this we need to return to Equation 
(3.27), were we had  
 xSx λ=   
 
which when premultiplied by x′ leads to  
 
 x′Sx = x′λx. 
 
By the rules of scalar multiplication [in particular Equation (1.28)], and by the fact that x′x = 1 we 
have  
  
 x′λx = x′xλ = λ  
 
so that we can conclude  
 
 x′Sx = λ. (3.28) 
 
At this point the reader will recognize the formula for the variance of a linear combination, 
Equation 4.9.  The value λ is called an eigenvalue of the matrix S.  It is the maximum value, q, of 
the variance of u = x′y which was our original motivation for this problem way back in Equation 
(3.21).  The vector x chosen to maximize this variance is called an eigenvector of S.   
 

3.6 A Small Example Calculating the Eigenvalue and Eigenvector 
 
We will now return to Equation (3.26), which although it looked like 
 
 0IxSx =λ− 22 , 
 
we can multiply by 1/2 to create  
 
 0IxSx =λ−  or 
 
 0xIS =λ− ][ . (3.29) 
 
Equation (3.29) can be solved trivially, as  
 

 
,

][][][ 11

0x

0ISxISIS

=

λ−=λ−λ− −−

 

 
but such a solution would not be useful at all to us and in fact would not give us what we are 
looking for, namely, the linear combination u  = x′y such that V(u) = x′Sx is as large as possible.  
To avoid falling into this trivial solution we must somehow pick λ such that  
 
 |S - λI| = 0  
 
which in turn implies that [S -  λI]-1 does not exist (see Section 1.8).  If [S -  λI]-1 does not exist, 
we are not stuck with x = 0, the trivial solution.  Below, we can see how this works with a 2 × 2 
example, lets say  
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In that case we have  
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Recalling the equation for the determinant of a 2 × 2 matrix [from the denominator of Equation 
(1.38)], we have  
 
 (2 - λ)2 - 12 = 0  
 
which as a quadratic equation has two roots, i. e.  
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where the roots are λ1 = 3 and λ2 = 1.  The first eigenvalue represents the maximum variance while 
the second represents the maximum variance that can be found after the first linear combination 
has been extracted.  It is also true that the last eigenvalue represents the minimum amount of 
variance that can be extracted by a linear combination.  We can now substitute λ1 back into 
Equation (3.29) in order to solve for the first eigenvector.  Calling this first eigenvector ,1⋅x we 
have  
 
 0xIS =λ− ⋅1][  
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so that -x11 + x21 = 0 and x11 - x21 = 0.  It is obvious then that x11 = x21.  Taken together with the 
restriction that x′x = 1 that we imposed in Equation (3.23), we have 
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3.7 Some Properties of Eigenstructure 
 
Before proceeding, it will be useful to take each of the eigenvectors, x⋅1, x⋅2, ···, x⋅p, and place them 
as columns into the matrix X.  We also take the eigenvalues, λ1, λ2,  ···, λp and put them on the 
diagonal of the matrix L.  The eigenvalues in L summarize a variety of properties of the original 
matrix S.  For example:  
 

 ∑ =λ=
p

i
i )(tr)(Tr ΛS  (3.30)  

 

 ∏λ=
p

i
i|| S  (3.31) 

 
The rank of a square matrix S is given by the number of eigenvalues > 0.  In other words, the rank 
of a square matrix is given by the number of non-null eigenvectors.  We say that a square matrix is 
of full rank if one cannot pick a non-null vector x such that x′Sx = 0.  We can see then from 
Equation (3.31) that if no eigenvalue is zero, the determinant, |S|, will be non-zero and it will be 
possible to find S

-1
.   

 
For each eigenvector-eigenvalue combination i, we have  
 
 Sx⋅·i = x⋅iλi  
 
so that if we premultiply by j⋅′x we have 
 
 iijj λxxSxx ⋅⋅⋅ ′=′ . 
 
Making the same argument for the eigenvalue and eigenvector j, we have  
 
 Sx⋅·j = x⋅jλj  
 
but now premultiplying by i⋅′x  
 
 jjii λ′=′ ⋅⋅⋅ xxSxx . 
 
Clearly it has to be the case that  
 
 jiij ⋅⋅⋅⋅ ′=′ SxxSxx  
 
in which case,  
 
 jjiiij λ′=λ′ ⋅⋅⋅⋅ xxxx . 
 
But for that to happen, it must be true that  
 
 .0ij =′ ⋅⋅ xx  (3.32) 
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In other words, each pair of eigenvectors is orthogonal.  When you add the standardizing 
constraint, Equation (3.23), we can say that  
 
 X′X = I . (3.33) 
 
The X matrix, as can be seen above, acts as its own inverse.  Any matrix X for which X′X = XX′ = 
I is called orthonormal.   
 
Here are some more properties of the eigenvalues and eigenvectors.  From Equation (3.27) we can 
make the simultaneous statement about each eigenvalue-eigenvector below,  
 
 SX = XL. (3.34) 
 
Premultiplying by X′ leads to  
  
 X′SX =  L . (3.35) 
 
Or, starting again from Equation (3.34) but postmultiplying by X′ this time leads to  
 
 S = XLX′ . (3.36) 
 
 = XL1/2 L

1/2
X′ (3.37) 

 
where the "square root" of the matrix L is clearly defined as },{ 2/1

iλ that is having the square root of 
each of the λi on the diagonal [c.f. Equation (2.14) and the discussion thereof].  Now if we define  
 
 B = XL1/2 
 
We can say that  
 
 S = BB′ (3.38) 
 
which provides a "square root" like effect, even if the square root of a non-diagonal matrix cannot 
be uniquely defined.  That this equation is not unique can be shown simply by defining the 
orthonormal matrix J, i. e. J′J = JJ′ = I.  Now if B* = BJ then  
 
 .** BBBJBJBBS ′=′=′=  
 
In factor analysis we seek a B matrix corresponding to a hypothesis about latent variables.  In 
Cholesky factorization, we produce a lower triangular B matrix.  In finding the eigenstructure of 
the S matrix, the columns of the B matrix produced in Equation 3.38) maximize the variance of 
the extracted components.   
 
But the eigenstructure of S captures even more of the properties of S.  For example, if S

-1
 exists,  

 
 S

-1
 = XL

-1
X′ . (3.39) 

 
In addition, if A = cS where c is a scalar, then  
 
 A = XcLX′ , (3.40) 
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and if A = S + cI then  
 
 A = X[L + cI]X′ . (3.41) 
 

3.8 Some Geometric Aspects of Eigenstructure 
 
Since X′X = I, X can be thought of as a rigid, or angle-preserving transformation of a coordinate 
space.  The original vector y is transformed to u by X as in  
 
 u = X′y. 
 
Here we have repeated Equation (3.21), except the transformation occurs for each eigenvector, not 
just the first one.  Alternatively, instead of thinking of y as moving to u, we can think of this as the 
axes of the space moving.  A picture of this is now shown:  
 

  
 
The angle between an old axis, yi, and a new axis, uj, is notated θij.  We note then for the two 
dimensional example given above, we have for X  
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The angles θij are determined by the direction of the principle axis of the ellipsoid x′Sx = λ. 

3.9 Linear and Nonlinear Parameter Estimation 
 
In almost all cases that we have in mathematical reasoning in marketing, there are some aspects of 
our model that we know, for example there might be the value π, and there are some values that 
we do not know and that therefore have to be estimated from the sample at hand.  For example, in 
the linear model, ,ˆ Xβy =  the X matrix is known, but the β vector contains a set of regression 
slopes that need to be estimated from the sample.  The topic of linear estimation is investigated in 
depth in Chapter 5.  For now, we note that we create an objective function, that when optimized, 
will lead us to good estimates for this unknown parameter vector.  For example, we might pick the 
sum of squares of deviations between predicted data and actual data.  In that case we would have  

 y1 

y2

 u2 

u1

 θ11 
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as our objective function.  The goal then is to pick values in the β vector so as to make f as small 
as possible.  According to the calculus, this can be done by determining the derivative of f with 
respect to β, and setting it equal to zero as in  
 

 0
β
=

∂
∂f . 

 
The derivative ∂f/∂β is a linear equation and happens to contain solely elements of the X matrix, 
the y vector and β in various combinations.  When we set it equal to zero, we can solve for β and 
end up with things on the right hand side that are known, namely X and y.  This allows us to 
derive a closed form or analytical solution for β that we call ,β̂   
 
 .)(ˆ 1 yXXXβ ′′= −  
 
The term closed-form means that we can use algebraic analysis to find the values for the 
unknowns.  In short, we end up being able to solve for the unknowns.  In other cases, our objective 
function, or its derivative, might be more complex.  In those cases we cannot just solve for the 
unknown parameters using algebra. This often happens when we are trying to model choice 
probabilities, or market shares, which; since they are bounded by 0 and 1; logically cannot be 
represented linearly.  When this happens we have to use non-linear optimization.  Non-linear 
optimization involves the following steps.   
 
1. We take a stab at the unknowns, inventing starting values for them and loading them into a 
vector.  Lets call that vector θ.   
 
2. We assess the derivative of the objective function at the current values in θ.  If the derivative is 
not zero, we modify θ by moving it in the direction in which the derivative is getting closer to 0, 
the null vector.  We keep repeating this step until the derivative arrives at the null vector.   
 
How do we know in which direction to move θ?  First we will look at a geometric picture, then we 
will use symbols to make the argument.  Lets assume that instead of an entire vector of unknowns, 
we have a single unknown; the scalar θ.  We have started out with an estimate of θ at θ1.   
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We are trying to move our estimate towards the bottom of the function.  This is logically 
analogous to a parachutist who lands on the side of the hills surrounding a valley and who wants 
to find the bottom of the valley in the dead of night.  How does he or she know which way to 
move?  By feeling with your foot, you can figure out which way is down.  The derivate ∂f/∂θ1 

gives us the slope of the function that relates θ to f, evaluated at θ1.  It lets us know which way is 
down.  If the derivative is negative, we need to move to our right on the graph, because that is the 
direction in which f is less.  On the other hand, if the derivative is positive, as it would be at 
position θ1, we need to move to our left.  In more formal terms, in nonlinear optimization we could 
calculate the next estimate of θ using the formula  
 

 
i

i1i
f
θ∂
∂

δ−θ=θ +  

 
where δ is the step size.  Sometimes we use the derivative of the derivative (the second order 
derivative) to fine-tune the step size.  The step size can be important because we want to make 
sure we end up at the global minimum of f, not a local minimum.  It also can help when you have 
good, rational, starting values for the first step that are close to their true values.  Good start values 
and a good choice for step size can also make the search go faster, something that is still important 
even in these days of cheap computing power.  In any case, non-linear optimization algorithms 
stop when the derivative gets close enough to zero, or in other words, when the difference between 
successive estimates of the unknowns does not change any more.  Its important to understand that 
typically, there are more than one unknown parameters estimated at the same time.  Thus the 
parameters and their derivatives are in vector form.   
 
Nonlinear estimation is used in many branches of statistics and is needed in almost every chapter 
except for 5, 6, 7 and 8.  

3.10 Maximum Likelihood Parameter Estimation 
 
Rather than minimize the sum of squared errors, a different philosophy would have us maximize 
the likelihood of the sample.  In general, the probability that our model is correct is proportional to 
the probability of the data given the model.  In Maximum Likelihood (ML), we pick parameter 
estimates such that the probability of the data is as high as possible.  Of course, it only makes 
sense that we would want to maximize the probability of observing the data that we actually did 
observe.   

θ1θ2
θ

f 
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We can illustrate this using μ, the population mean.  Suppose that we had a sample of three 
people, with scores of 4, 6 and 8.  What would the probability be of observing this sample if the 
true population value of μ was 249?  Pretty low, right?  What would the probability of the sample 
be if μ was equal to 6?  Certainly it would be quite a bit higher.  The likelihood principle tells us to 
pick that estimate for μ that maximizes the probability of the sample.  Of course to do this, we 
need to make an assumption about the probability distribution of the observations that comprise 
the sample.  
 
To make the discussion more general, consider a set of observations y1, y2, ,L yn.  Lets say further 
that we have a model and that the unknown parameters of the model are in the vector θ.  
According to the model, the likelihood of observation i is Pr(yi | θ).  Assuming independent sample 
units, i. e. no data point is influenced by any other, the likelihood function according to the model 
is 
 

 ∏=
n

i
i0 )|yPr( θl . (3.42) 

 
In these cases we also tend to have a version of the Pr(yi) that does not depend on θ.  The 
likelihood of the sample under this alternative may be called lA.  It turns out that under very 
general conditions, )ln(2 A0 ll−  is distributed according to the Chi Square distribution, i. e.  
 
 .)ln(2ˆ A0

2 ll−=χ  (3.43)   
 
The minus sign in front of the expression for Chi Square means that we can switch from 
maximizing l0 to minimizing Chi Square. Minimization is always a safer bet where computers are 
concerned since a number too large to be processed causes far more of a problem than a number 
that is too close to zero (the square in Chi Square implies that it is non-negative).  What’s more, 
this allows us to test our model against the general alternative hypothesis using the χ2 distribution.  
The degrees of freedom of the Chi Square are equal to the difference between the number of data 
points that we are using; in this case n, and the number of unknown elements in θ.   
 
Here, it could be added that in some cases, such as linear regression, maximum likelihood 
estimates have a closed form and can be estimated using the formula for β̂ given in the previous 

section.  In other words, β̂ does not just minimize the sum of squared errors, it also maximizes the 
likelihood function.  In other cases, we don’t get that sort of break and nonlinear optimization 
must be used.  
 
Maximum likelihood comes with variances and covariances of the parameter vector "built-in".  
The matrix of the second order derivatives, known as the Hessian, contains the elements: 
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Elements of the above matrix, hij = ,
ˆ

ji
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θ∂θ∂
χ∂ consist of the derivative of the derivative of 2χ̂ with 

respect to θi, with respect to θj.  In other words,  
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Here we are treating 
j

2ˆ
θ∂
χ∂ as a function of θj, and taking its derivative with respect to θj. 

 
The covariance matrix of θ is given by  
 
 V(θ) = [-E(H)]

-1 
(3.46) 

 
with the term in the square brackets, -E(H), minus the expectation of the Hessian, called the 
information matrix.   
 
Whenever possible, marketing scientists prefer to work with maximum likelihood estimators given 
that they have very desirable properties.  In addition to knowing the variance matrix of your 
estimator, if θ̂  is the maximum likelihood estimator of θ then )ˆ(f θ estimates f(θ) (for more detail 

see Johnson and Wichern, 2002, p. 170).  You can estimate θ̂  and then apply the function f.  More 
importantly, if you can derive or create a maximum likelihood estimator in a certain situation, that 
estimator is guaranteed to be consistent, asymptotically normally distributed and asymptotically 
efficient (a proof of this appears in Theil 1971, pp. 392-7).  The phrase asymptotically efficient 
implies that no other estimator can have a lower variance.  
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