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Chapter 7: The Analysis of Variance 
 
Prerequisites: Chapter 6 

7.1 History and Overview of ANOVA 
 
The analysis of variance is often used to test for group differences – very frequently different 
groups of consumers who have been exposed to various treatments.   The word treatment 
obviously makes reference to the early days of the technique from biology early in the 20th 
century.  In the context of marketing, a classic and simple example might involve different ads 
viewed by the different groups.  Of course ANOVA is applicable to analyses of pre-existing 
groups as well.   
 
The historical roots of ANOVA go back long before the existence of computers and before text 
writers acknowledged that the regression technique of Chapters 5 and 6, and ANOVA, are 
basically one and the same.  Of course, today, all the major statistical packages compute ANOVA 
as a special case of regression.  And understanding ANOVA in this way will add to the student’s 
intuition about what is going on.  However, there are at least two different ways of notating 
ANOVA: an older method that relied on calculating machines and that uses multiple subscripts on 
the dependent variable, and the newer way that is optimized for computer calculation that uses one 
subscript as the observations are stacked in the vector y.  In what follows we will offer a brief 
review of the older notation while demonstrating how it relates to the newer regression-centric 
view.   
 
In what follows we will also assume that we have some sort of qualitative variable that divides the 
population into A groups indexed by a = 1, 2, ···, A.  The observations from these groups might be 
represented as yia, that is, observation i from group a.  A pictorial representation of the situation 
might look like the following  
 

  
You can see that the second subscript is indexing group membership while the first keeps track of 
the individual within that group.  Further, in group a, the sample size is na with that observation 
being the last case in group a.  This is known as a one-way analysis of variance, since there is but 
a single qualitative variable that identifies group membership.  The traditional test of the null 
hypothesis involves the population means and whether they are all equal, viz. 
 
 .:H A210 μ==μ=μ L  (7.1) 
 
In general, we would estimate the population mean μa using the sample mean .yˆ a.a =μ   The 
subscript for the ,y a. the “·a” is taken from Equation (1.2) and is now holding the place of the 
eliminated first subscript in the data, the one that tracks the individual observation.  Remaining 
with the older tradition, we say that our model is  
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 ,ey iaaia +α+μ=  (7.2) 
 
with μ being the overall mean, and the αa quantifying the impact of group membership.  The eia 
represent error in the model, and in this case we can say that it is an error particular to group a.  
The problem is that we have exactly A unique groups – and A values of a.y in our data – but we 
have A + 1 parameters.  That is, there are A αa plus one μ.  We need to restrict the αa in some way.  
This problem is related to the idea that in the statement of the null hypothesis in Equation (7.1), 
there are A – 1 equal signs, not A of them.  We are not interested in the levels of the group means 
per se, but in the differences between the levels of the group means.  It turns out there are at least 
three popular ways to parameterize this model (of course there are an infinite number of ways to 
do it in general).  The first one, covered next, is called effect coding.   

7.2 Effect Coding 
 
One thing we can do is impose the restriction  
 

 ,0
A

a
a =α∑  (7.3) 

 
for example by setting .1A21A −α−−α−α−=α L  The αa represent the effect of being in group a:  
 
 ⋅⋅⋅ −=α yy aa  (7.4) 
 
where ⋅⋅y  is clearly equivalent to μ.   
 
At this time, let us think about how this model, as parameterized above, relates to regression.  In 
the regression model y = Xβ + e, the qualitative independent variable must be represented 
somehow using the columns of X.  The αa must end up in the β matrix, or at least A – 1 of them 
must do so.  We can, as we saw above, solve for the last one by subtraction.  To illustrate how to 
implement effect coding lets say we have A = 4 groups.  We do not have to show all of the 
subjects in all of the groups since the model for all of the subjects within each group must be 
identical.  It will suffice to show the model for the i-th subject in each group.  To the extent that 
any two members of the same group do not have the same score, this contributes to the error term.  
Now, our model will be  
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 (7.5)  

 
It is worth contemplating the columns of X for a bit.  The first one is clearly just the classic y-
intercept, just as it has always been in Chapters 5 and 6.  The last three columns code for group 
membership.  The first vector coding for groups has a plus one for group 1 and a -1 for the last 
group.  Zeroes appear in every other row of that column.  The second group membership vector 
repeats the pattern but the plus one goes against group two.  Finally, the last vector has a one in 
the next to last position, a minus one in the last position and zeroes elsewhere.  To summarize, 
each column x·j (j = 1, 2, ···, A-1) gets a 1 for group j, a negative 1 for group A, and everything 
else is null.  Writing out the model in scalar terms reveals  
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The null hypothesis  
 
 0:H 3210 =β=β=β  
 
is mathematically equivalent to  
 
 .:H 43210 μ=μ=μ=μ  
 
While the proof of this equivalence will be left to the interested reader, one can see that both 
statements have three equalities.  Using the methods of Chapter 6, we can set up the hypothesis 
matrix  
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which having three rows, provides an overall three degree of freedom test of no mean differences.  
Individual one degree of freedom tests for any of the βj may or may not be of interest.  H0: βj = 0 is 
equivalent to H0: μj - μ = 0, that is, that there is no significant effect of being in group j.   

7.3 Dummy Coding 
 
In our model, 
 ,ey iaaia +α+μ=  (7.6) 
 
there are multiple ways to resolve the ambiguities and identify the model.  We now cover the 
second one in which we impose the restriction 
  
 αA = 0  (7.7) 
 
which then implies that  
 
 Ay ⋅=μ and 
 
 Aaa yy ⋅⋅ −=α . 
 
The coding for the design matrix looks like this:  
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The columns of X are often called dummy variables since each value is either a '1' or a '0'.  This 
means that  
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,ŷ
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You can see that column x·j gets a '1' for group j, j = 1, 2, ···, A - 1.  Everything else gets a '0'.  As 
before, H0: β1 = β2 = β3 = 0 tests H0: μ1 = μ2 =  μ3 = μ4, and we can construct the A hypothesis 
matrix as above in equation (7.5).  Test of individual βj values are probably not interesting since 
H0:  βj = 0 is equivalent to H0: μj - μA = 0.  However, this might be interesting if the last group, 
group A, is some sort of control group and the researcher wants to compare some of the other 
groups to the last one.   
 
Note that both systems of coding lead to the same 3 degree of freedom F with the same value.  
What varies is how these three degrees of freedom are partitioned.   And now we look at the final 
method of partitioning group effects, orthogonal coding.   

7.4 Orthogonal Coding 
 
In the previous two methods of coding, effect and dummy coding, the columns of X are correlated 
which is to say they are not orthogonal, a concept defined in Equation (1.17).  In this section we 
describe a method of coding the design matrix in such a way that X′X is a diagonal matrix.  Of 
course this means that the columns of X are all mutually orthogonal, meaning that the inner 
product is zero.  There are very many ways of doing this, but here is one simple scheme that can 
be used to create orthogonal columns in X:  
  

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−−−

=

3001
1201
1111
1111

X . 

 
The pattern should be clear - column j has j '-1's and one 'j'.  Here we see that H0: β1 = 0 is 
equivalent to H0: μ1 = μ2; H0: β2 = 0 is equivalent to H0: ;2)( 321 μ=μ+μ and H0: β3 = 0 is 
equivalent to H0: .3)( 4321 μ=μ+μ+μ   
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One can modify the scheme to test certain planned comparisons of interest.  Suppose we had 
planned a priori to test H0: μ2 = μ3.  We can set the second column of X to embody this 
comparison:  
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which the reader can see as effectively identical to the example immediately above, but changing 
the order of the rows.  At this point we need only test the hypothesis that β1 = 0.   
 

Now suppose we wish to compare groups 1 and 2 against 3 and 4, i.e. that .
22

4321 μ+μ
=

μ+μ   

We can use X as below:  
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Here we can test our hypothesis using β1.  The pattern of signs in the second column of X (the 
column pertaining to β1) allows you to interpret the sign of β1.  If  β1 is positive it means that the 
first two means are greater than the second two.   
 
Note that in all the cases we have discussed in this section, we have orthogonal columns of X.  
This leads to an ease of interpretation of the β's.   

7.5 Interactive Effects 
 
In many cases in marketing the impact of one independent variable depends on the specific values 
of another independent variable.  For example, we might find that as price increases, consumer 
purchase intention is reduced, except when there is the presence of advertising.  This is illustrated 
in the hypothetical interaction plot below:  
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An interaction limits our ability to generalize.  If you were to summarize the impact of Price on 
Purchase Intent, you would have to take into account the value of the other independent variable, 
Advertising.  By the same token, if you were to try to describe what effect Advertising has on 
Intent, you would have to pull Price into the explanation.  An interaction is characterized by non-
parallel lines in an interaction plot, as is shown above.   Interactions of many forms are possible, 
but the linear model can subsume any interactive effect by including columns in the design matrix 
X which consist of the products of other columns of X.  To see this, look at the design matrix 
pictured below: 

 

 
 
The subscripts on the dependent variable values run from L to M to H (low, medium and high) to 
index the level of the price variable and from A to N to indicate advertising vs. no-advertising.  
Column 0 of the X matrix codes for the usual intercept term.  Column 1 uses orthogonal coding to 
register the difference in the level of advertising, while columns 2 and 3 use orthogonal coding to 
track the 3 levels of Price.  With three levels, Price has 2 degrees of freedom, which is to say, 2 
columns in X.  The fourth column of X is the product of columns 1 and 2, while the fifth column 
is the product of columns 1 and 3.  The interaction between Price and Advertising also has 2 
degrees of freedom.  The reader might notice that all six columns of X are mutually orthogonal.   
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7.6 Quantitative Independent Variables 
 
We can actually use the linear regression model to fit a non-linear model.  Almost any quantitative 
function can be approximated by a polynomial of sufficiently high order.  Consider the model 
below:  
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To make this model work, one should first deviate the xi from the mean to avoid problems of high 
correlation between the columns of the X matrix.  With a relatively small number of levels of the 
quantitative independent variable, you can use the method of orthogonal polynomials instead.  
Any function can be represented as a polynomial with sufficiently high order.  A curve with one 
elbow can be expressed as a quadratic function, one with two elbows can be imitated with a cubic 
function, and so on from quartic, quintic, etc.  For example, we might be concerned with the shape 
of the relationship between the length of an ad viewed by subjects, and their attitude towards that 
ad.   Imagine that one group saw a 1 minute ad, another a 2 minute ad, and there were also 3 and 4 
minute groups.  Presuming that the ad is affective, the relationship could take on a variety of 
forms, such as those pictured below:  
 

 
 
On the far right is pictured a very simple linear assumption, in the middle a curve with one elbow, 
and on the left a more complex curve requiring a cubic component. We might construct the design 
matrix as below using  
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but it would be smarter to use a columns that were not so highly correlated.  As mentioned above,  
if you column-center the linear component and then use it as a basis for creating the other 
columns, this will help.  You can also use orthogonal polynomials (see the tables in Bock 1975 for 
example):  
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One could then test the necessity of the cubic term, assuming a linear and quadratic component 
using a t-test.  If that proves non-significant, one could go on and test the necessity of the 
quadratic term.   

7.7 Repeated Measures Analysis of Variance  
 
A special case of the analysis of variance occurs when we have a set of commensurate variables, 
or commensurate measures.  The expression implies that the same scale is repeatedly applied on 
several measurement occasions.  For example, perhaps consumers are asked to rate four brands 
using a particular measure.  Repeated measures are multivariate in nature, meaning that there is 
more than one dependent variable.  In the example with four brands, there would be four 
dependent variables.  We define yij as the measurement on person i, on measure j, with i = 1, 2, ···, 
n and j = 1, 2, ···, p.  There are two ways to treat such data.  We can place all of the measurements 
in a matrix, Y, with a row for each subject and a column for each measure.  This is the 
multivariate approach, a topic covered in Chapter 8.  For now, we will note that with four brands, 
and p = 4, the hypothesis that the means of the four brands are equal, i.e. that the columns of Y 
have equal means, is equivalent to the hypothesis that the three columns of Y~ below have means 
of zero.  The matrix Y~ is given by  
 
  Y~ = YM (7.9) 
 

 .

300
120
111
111

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
= YY  (7.10)  

 
The hypothesis matrix M, when used to postmultipy the original data matrix Y, transforms the 
columns of Y into new columns in .~Y  The first new column consists of the difference between the 
old columns 1 and 2.  The second new column in Y~ is the difference between the combination of 
columns 1 and 2 and column 3, and so forth.   
 
The univariate approach stacks all of the data in a single vector, called y, in such a way that each 
subject's data appears contiguously, i.e.  
 
 ]yyyyyyyyy[ np2n1np22221p11211 LLLL=′y  
 
We can then say that  
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where each Σ and each 0 is a p by p matrix.  There are n of them, so that the entire variance matrix 
of y is np by np.  That the covariance matrix of each subject, Σ, is homogeneous or identical from 
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one subject to the next, is only an assumption, analogous to the assumption of homogeneity of 
variance of the scalar σ

2
 in regular ANOVA.   

 
To use the univariate approach to repeated measures, the variance of the transformed measures 
must be homogeneous and independent, that is  
 
 IΣMM 2σ=′  (7.12) 
 
where the M matrix is the hypothesis matrix from above, Σ is the p by p (in our example with four 
brands, four by four) covariance matrix of the original measures, and σ2I is a scalar matrix with 
identical values along the diagonal (three identical values in our example with four brands).  Often 
this assumption is called sphericity.  If this assumption is met, we can use univariate analysis of 
variance as will now be described using an example.  

7.8 A Classic Repeated Measures Example 
 
Imagine that we have three factors including one between subjects variable that divides subjects 
into two groups, a within-subjects factor with three levels and a within subjects variable that has 
four levels.  All told our design is a 2 × 3 × 4 design, with the three factors named A, B and C.  
We can further imagine that we have 10 subjects, and since each subject is measured 12 times 
(since the repeated measures part of the design, B x C, involves 12 measures), we have a total of 
120 data points.  The results of such an ANOVA are typically described in an ANOVA table.  A 
table for this design could look like this;  
 

Source of Variance df Error Term 
A 1 S(A) 
S(A) 8 - 
Between-Subjects Total 9 - 
B 
C 
BC 
AB 
AC 
ABC 
S(A) · B 
S(A) · C 
SA(A) · BC 

2 
3 
6 
2 
3 
6 
16 
24 
48 

S(A) · B 
S(A) · C 
S(A) · BC 
S(A) · B 
S(A) · C 
S(A) · BC 
- 
- 
- 

Within-Subjects Total 110 - 
TOTAL 119 - 

 
The notation in the table bears some explanation.  S(A) is used to represent Subjects within levels 
of the A factor.  In other words, subjects are nested within groups since the same subject does not 
appear in more than one group.  In contrast, Subjects are crossed with the two repeated measures: 
B and C.  In addition, the factor Subjects is a random effect.  This means that the "levels" of 
Subjects were randomly sampled from some larger population to which we would like to 
generalize our results.  In contrast, A, B and C are fixed effects whose levels are chosen for their 
inherent interest to the experimenter, and hopefully for that person, the reviewers.   
 
You might note that the correct error term for the grouping factor is Subjects within groups.  The 
correct error term for any repeated measures factor is that factor by Subjects interaction.  In 
general terms, consider a purely within-subject effect, w, a purely between-subject effect, b, and 
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their interaction, wb.  Either w or b may be main effects, interactions, or special contrasts.  The 
error term for b is Subjects nested in groups.  The error term for w is Subjects · w  and the error 
term for wb is also Subjects · w.  Homogeneity of Subject variance within groups is a needed 
assumption, as is the spherecity of transformed measures as described above in Equation (7.12). 
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