
86  Chapter 8 

Chapter 8: The Multivariate General Linear Model 
 
Requirements: Sections 3.4, 3.5 - 3.8, 4.3  Chapter 7 

8.1  Introduction 
 
The main difference between this chapter and the chapters on the General Linear Model; 5, 6 and 
7; lies in the fact that here we are going to explicitly consider multiple dependent variables.  
Multiple dependent variables are to some extent discussed in Chapter 7 in the context of the 
analysis of variance.  In that chapter, however, we made an assumption about the error distribution 
which allowed us to treat the problem as essentially univariate [see Equation (7.12)].  In this 
chapter, we will be dealing with multiple dependent variables in the most general way possible, 
namely the multivariate general linear model.  Before we begin, it will be necessary to review 
some of the fundamentals of hypothesis testing, and then after, to introduce some mathematical 
details of use in this area.  

8.2  Testing Multiple Hypotheses 
 
In Chapter 6, we covered two different approaches to testing hypotheses about the coefficients of 
the linear model.  In Equation (6.15) we had  
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that allows us to test one degree of freedom questions of the form a'β = c, while in Equation (6.18) 
we have the test statistic  
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that allows us to test multiple degree of freedom questions Aβ = C.  In the former case we have n - 
k degrees of freedom, and in the latter, q and n - k degrees of freedom.  In that chapter we made 
the implicit assumption that these tests had been planned a priori, and that they were relatively 
few in number.   In the case of multiple dependent variables, this second assumption becomes far 
less tenable.  We begin by discussing a way to test hypotheses even when there are a large number 
of them.  We then discuss the case where this large number of hypotheses might even be post hoc.   
 
8.3  The Dunn-Bonferroni Correction 
 
What can we do if we wish to test a large number of hypotheses, say, H1, H2, ···, Hr?  For any 
particular hypothesis, we can limit the probability that we reject H0 when it was indeed true of the 
population, that is we can limit  
 
 Pr(Type I Error on Hi) = αi. 
 
But what is the probability of at least one Type I error in a sequence of r hypotheses?  To delve 
into this question it will be useful to utilize the notation of Set Theory, where ∪ symbolizes union 
and ∩ symbolizes intersection.  The probability of at least one Type I error is  
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 α* = Pr(Type I error on H1 ∪ Type I Error on H2 ∪ ··· ∪ Type I Error on Hr ). (8.1) 
 
We can think of α* as the overall α rate, the probability of at least on Type I Error. Define Ei as a 
Type I error event for Hi.  From probability theory, with r = 2 hypotheses, lets say, the situation is 
illustrated below:  

  
 
Two parts of the outcome space are shaded, the two parts that correspond to E1 (a Type I Error on 
H1) and E2 (a similar result on H2).  There is some overlap, namely the part of the space 
comprising the intersection of E1 and E2.  It can be shown that  
 
 Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) - Pr(E1 ∩ E2). 
 
Needless to say, one has to subtract out the Pr(E1 ∩ E2) so that it is not counted twice when adding 
up Pr(E1) + Pr(E2).  For r = 3 hypotheses we have a diagram as below  
 

  
 
and we can say  
 
 Pr(E1 ∪ E2  ∪ E3) = Pr(E1) + Pr(E2) + Pr(E3) -  
 
 Pr(E1 ∩ E2) - Pr(E1 ∩ E3) - Pr(E2 ∩ E3) + Pr(E1 ∩ E2 ∩ E3). 
 
Here, we needed to subtract all of the two-way intersections but then we had to add back in the 
third way intersection which was subtracted once too often.  In any case, it is clear that the simple 

sum of the probabilities, ∑
r

i
i )EPr( is an upper bound on the probability of at least one Type I 

Error since we have not subtracted out any of the intersecting probabilities.  We can then safely 
say that  
 
 Pr(E1 ∪ E2 ∪ ··· ∪ Er)  ≤  Pr(E1) + Pr(E2) + ··· + Pr(Er). 
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Now of course, Pr(Ei) = αi = α for all i, so in that case we can state  
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in which case  
 
 α* ≤ r · α. 
 
If we select α so that  
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we set an upper limit on our overall α.  For example, with r = 10 a priori  hypotheses, if I want my 
overall Type I rate to be  α* = .05, I would pick α = .05/10 = .005 for each hypothesis.   
 
This logic is of course flexible enough to be applicable to any sort of hypotheses whether they be 
about factor analysis loadings, differences between groups, or tests of betas.  A problem with this 
approach becomes apparent when r gets big.  It then becomes very conservative.  At that point it is 
reasonable to use a different logic, a logic that is also applicable to post hoc hypotheses.  We now 
turn to that.   

8.4  Union-Intersection Protection from Post Hoc Hypotheses 
 
This technique, also known as the Roy-Scheffé approach, is one that protects the marketing 
researcher from the worst data sniffing case possible, in other words, any post hoc  hypothesis.  As 
with the Dunn-Bonferroni test, it is applicable to any sort of hypothesis testing.  And as with the 
Dunn-Bonferroni the overall probability of at least one Type I event is  
 
 α* = Pr(Type I error on H1 ∪ Type I Error on H2 ∪ ··· ∪ Type I Error on Hr ) 
 
 = Pr(E1 ∪ E2 ∪ ··· ∪ Er). 
 
This probability is equivalent to 1 - Pr(No Type I Events).  Define the complement of Ei as ,Ei a 
non-Type I event.  We can then re-express the above equation, expressed as a union, as  
 
 ).EEEPr(1* r21 ∩∩∩−=α L  (8.2) 
 
which is instead expressed as an intersection.  A commonality to all hypothesis testing situations is 
that iE  occurs when the calculated value of the test statistic, ,ˆ

iθ  exceeds a critical value, θi.  
Perhaps θi is a t, and F, or an eigenvector of E

-1
H.  In any of these cases,  
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where maxθ̂ is the largest value of θ̂ that you could ever mine out of your data.  Here is an example 
inspired from ANOVA.  Suppose we wanted to test  
 
 H0: c′μ = 0  
 
where ][ k21 ′μμμ= Lμ  is the vector of population means from a one way univariate 
ANOVA, in other words the topic of  Chapter 7 where the interest is on testing hypotheses about 
differences among the groups.  Here we wish to be protected from  
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Picking elements of the vector c so as to make this t as large as possible leads to the Scheffé 
(1959) post-hoc correction.   More information on post hoc (and a priori) tests among means can 
be found in Keppel (1973).   

8.5  Details About the Trace Operator and It's Derivative 
 
The trace operator was introduced in Chapter 1.  To briefly review, the trace of a square matrix, 
say A, is defined as Tr(A) = ,a ii∑  i.e. the sum of the diagonal elements.  Some properties of 
Tr(·) follow.  Assuming that A and B are square matrices we can say  
 
Transpose Tr(A) = Tr(A′) (8.4) 
 
Additivity Tr(A + B) = Tr(A) + Tr(B) (8.5) 
 
Then, for A m · n and B n · m we have  
 
Commutative Tr(AB) = Tr(BA) (8.6) 
 
which further implies, for C m · m  
 
Triple Product Tr(ABC) = Tr(CAB) (8.7) 
 
In Chapter 3, we discuss the derivative of a scalar function of a vector, and a vector function of a 
vector.  Here we want to look at the derivative of a scalar function of a matrix, that function being, 
of course, the trace of that matrix.  To start off, note that by definition  
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where f(X) is a scalar function of the matrix X.  Now we can begin to talk about the Tr(·) function 
which is a scalar function of a square matrix.  For A m · m we have  
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For A m · n and B n · m we can say  
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which also implies, from Equation (3.19) 
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Finally, assuming we have A m · m and B m · m,  
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8.6  The Kronecker Product 
 
We now review the definition of the Kronecker product, sometimes called the Direct product, 
with operator ⊗.  By definition,  
 
 }a{ ijqpnmnqmp BBAC =⊗= . (8.13) 
 
For example,  
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Here are some properties of the Kronecker product.  We can say that  
 
Transpose (A ⊗ B)′ = A′ ⊗ B′. (8.14) 
 
 
For A m · n, B n · p and C p · q, it is the case that 
 
Associative  AB ⊗ C = A ⊗ BC. (8.15) 
 
For A and B m · n and C p · q, 
 
Distributive (A + B) ⊗ C = A ⊗ C + B ⊗ C. (8.16) 
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For A m · n, B n · p and C q · r and D r · s, 
 
 (A ⊗ C)(B ⊗ D) = AB ⊗ CD. (8.17) 
 

8.7  The Vec Operator 
 
For a matrix A, lets say m by n, we define  
 

 [ ].vec)(vec m21

m

2

1

⋅⋅⋅

⋅

⋅

⋅

′′′=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

= aaa

a

a
a

A L
L

 (8.18)  

 
While other definitions of Vec(·) are possible, this one, that does so one row at a time, will prove 
useful to us when we start to look at the multivariate GLM.  In particular, the following theorem 
will be quite useful.  For A m · n, B n · p and C p · q, 
 
 Vec(ABC) = (A ⊗ C′) Vec(B). (8.19) 
 

8.8  Eigenstructure for Asymmetric Matrices 
 
Suppose we needed to maximize x′Hx subject to x′Ex = 1.  Then  
 
 f(x) = x′Hx - λ(x′Ex -1) (8.20)   
 
and to minimize we set  
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Rearranging a bit we have  
 
 (H - λE)x = (E

-1
H - λI)x = 0. (8.22) 

 
You will note the eigenstructure discussed in Chapter 3 is a special case of the current discussion 
with E = I.  In our case, as E

-1
H is asymmetric, the eigenvectors are not orthonormal [defined in 

Equation (3.33)].  Instead we have the relation  
 
 E

-1
H = XLX

-1
 . (8.23) 

 
For symmetric matrices we have had X

-1
 = X′, but not in this case.  

 

8.9  Eigenstructure for Rectangular Matrices 
 
For completeness, we note that any m ⋅ n matrix A or rank r can be decomposed into the triple 
product  
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 A = XL

1/2
V′ (8.24) 

 
where X is m ⋅ r,  L

1/2
 is r ⋅ r and V is n ⋅ r.  This is called singular value decomposition.  The 

matrix X contains the left eigenvectors of A while V contains the right eigenvectors of A.  Further, 
V′V = I and X′X = I.  There are important relationships between the eigenvalues of a rectangular 
matrix and a cross product matrix.  We have  
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and  
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½
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½
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If A is already symmetric then A′A = AA′ so X = V.   
 

8.10  The Multivariate General Linear Model 
 
The multivariate general linear model is a straightforward generalization of the univariate case in 
Equation (5.3).  Instead of having one dependent variable in one column of the vector y, we have a 
set of p dependent variables in the several columns of the matrix Y.   The model is therefore  
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ŷŷŷ
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which, as you can see, implies that the number of columns of the B matrix match the number of 
columns of the Y matrix.  Perhaps this concept is better represented using the dot subscript 
reduction operator (Section 1.1), which allows us to present the model as  
 
 ][]ˆˆˆ[ p21p21 ⋅⋅⋅⋅⋅⋅ = βββXyyy LL  (8.28) 
 
with each column of Y entering into a regression equation with the corresponding column of B 
serving as the coefficient vector.  We can express the model most succinctly by using  
 
 .ˆ XBY =  (8.29) 
 
Next we define the n · p error of prediction matrix as ε, i. e.  
 
 YY −= ˆε  
 
so that  
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 Y = XB + ε. (8.30) 
 

8.11  A Least Squares Estimator for the MGLM 
 
How do we come up with estimators for the unknowns in the B matrix? When Y the error e was 
only a vector, as in Chapter 5, we could pick our objective function as e′e.  The matrix ε′ε on the 
other hand, is not a scalar but a p · p sum of squares and cross products matrix.  In this case what 
we do is to minimize the trace of ε′ε as we will now see.  Our objective function is  
 
 f = Tr[ε′ε] (8.31) 
 
which, according to Equation (8.30), can be expanded to  
 
 f = Tr[(Y - XB)′ (Y - XB)].   (8.32) 
 
Factoring the product leads to four components as below;  
 
 f = Tr[Y′Y - Y′XB - B′X′Y + B′X′XB].  
 
But since Equation (8.5) notes that the trace of a sum is equivalent to the sum of the traces, we can 
now say 
 
 f = Tr(Y′Y) - Tr(Y′XB) - Tr(B′X′Y) + Tr(B′X′XB). 
 
More simplification is possible.  From Equation (8.4) we note that Tr(B′X′Y) = Tr(Y′XB) and 
from Equation (8.7) we note that Tr(Y′XB) is equivalent to Tr(BY′X).  We can now rewrite f as 
 
 f = Tr(Y′Y) -  2Tr(BY′X) + Tr(B′X′XB). 
 
In order to make f as small as possible, it is necessary to find the ∂f/∂B.  Using Equations (8.10) as 
well as (8.12), we have  
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But since X′X is symmetric, we can simplify a bit more and have  
 

 XBXYX
B
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After setting Equation (8.33) equal to zero, this now leads us to the multivariate analog of the 
normal equations [Equation (5.7)] as below:  
 
 YXXBX ′=′  (8.34) 
 
so that  
  
 YXXXB ′′= )(ˆ  (8.35) 
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Each column of B̂ has the same formula as the univariate model, i. e.  
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8.12  Properties of the Error Matrix ε 
 
In order to talk about the distribution of the error matrix ε, we will have to rearrange it somewhat 
using the Vec(·) function of Section 8.7.  We will assume, in a multivariate analog to the Gauss 
Markov Assumption of Chapter 5, that the distribution of the n by p matrix ε is 
 
 ),(N~)(Vec ppnn1np ΣI0 ⊗ε . (8.36) 
 
The Vec operator has unpacked the ε matrix, one row at a time, in other words, one consumer's 
data at a time.  Since there are n consumers with p measurements each, the mean vector of Vec(ε) 
is np by 1.  The covariance matrix for Vec(ε), since the latter has np elements, must be np by np.  
This covariance matrix has a particular structure that logically, and visually, is reminiscent of the 
structure we assume in the univariate case presented in Equation (5.16), that of σ

2
I = I · σ

2
.  Here, 

instead we have the partitioned matrix 
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with each Σ and each null matrix 0 being p · p.  The Σ in the ith diagonal partition represents the 
(homogeneous) variance matrix for observation i.  The 0 in the i, jth position implies that rows i 
and j of ε, corresponding to subjects i and j, are independent.   
 

8.13 Properties of the B Matrix 
 
It is now timely to contemplate the expectation and variance of our estimator of Equation (8.35).  
Before proceeding, if you wish you can review some of the rules of expectations and variance 
presented in Section 4.1.  The expectation will be straightforward, as 
 
 ])[(E)ˆ(E 1 YXXXB ′′= −  
 
which for fixed X and Equation (4.5) leads to  
  
 .)()(E)()ˆ(E 11 BXBXXXYXXXB =′′=′′= −−  
 
In order to derive the ),ˆ(V B  we will need Theorem (4.9) as well as the more recent Theorem 
(8.19).  OK, let us proceed by noting that  
 
 .)()(ˆ 11 YIXXXYXXXB ′′=′′= −−  
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Now with (X′X)

-1
X′ playing the role of "A", Y playing the role of "B", and the p by p identity 

matrix I playing the role of "C", we apply Theorem (8.19) to show that  
 
 )(Vec])[()ˆ(Vec 1 YIXXXB ⊗′′= −  
 
Now we just need to recall that Var[Vec(Y)] = I ⊗ Σ and to apply Theorem (4.9) and take it to the 
bank:  
 
 .])()[(])[()]ˆ(Vec[Var 11 IXXXΣIIXXXB ⊗′⊗⊗′′= −−   (8.38) 
 
Note that in the above we have taken advantage of Equation (8.14) to express 
 
 [(X′X)

-1
X′ ⊗ I] ′ = X(X′X)

-1
 ⊗ I .  

 
Now applying Equation (8.17) two times to Equation (8.38) we can express it as  
 
 .)()]ˆ(Vec[Var 1 ΣXXB ⊗′= −  (8.39) 
 

8.14 The Multivariate General Linear Hypothesis 
 
In Chapter 6 we looked at q degree of freedom hypotheses of the form  
 
 H0: Aβ - c = 0, 
 
where the matrix A had q rows and where 0 is a q by 1 column of zeroes.  In this chapter, since the 
B matrix has multiple columns of possible interest, as compared to β which is a column vector, we 
allow ourselves the possibility to test linear hypotheses about these several columns of B.  The 
general form of the hypothesis is then  
 
 H0: ABM - C = 0. (8.40) 
 
The q rows of A test hypotheses concerning the k independent variables. A is therefore q · k with q 
≤ k.  The l columns of M test hypotheses about the p dependent variables.  M is necessarily p · l 
with l ≤ p.  Next, in Section 8.15 we will look at some examples of A and M.   
 

8.15  Some Examples of MGLM Hypotheses 
 
In our first example, we have k = 3 with x·0 being the usual column of 1's, x·1 being income, and 
then x·2 being education.  On the dependent variable side, we have p = 2 with y·1 a measure of 
attitude towards a particular brand and y·2 being a likelihood of purchase measure.  Imagine for a 
moment that we want to find out if education and income, taken jointly, impact the two dependent 
variables.  Our hypothesis matrices would then take the form as shown below,  
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In the second example, k = 1 and x·0 is the usual vector of n 1's.  However, p = 4 where y·1 through 
y·4 are evaluations of four product concepts on a 10 point scale.  In this second example, the 
question of interest is, "Do the product evaluations differ?"  In this case, we will use the 
multivariate approach to repeated measures.  The current approach is in contrast to the univariate 
approach covered in Section 7.7.  Here we have  
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Since there are no real independent variables, the matrix B is actually a row vector with only the 
intercepts present.  In an intercept only model (see Section 5.9), the β0 values are simply the 
means of the dependent variables.  The M hypothesis matrix transforms the four variable means 
into three mean-differences.  Thus, the hypothesis is of three degress of freedom which test for 
equality among the levels of the four original dependent variables.   
 
Our example number 3 includes k = 4 with an intercept term plus three attitude variables.  For 
dependent variables, we have p = 3 behavioral measures.  Our hypothesis will be an omnibus 
question  designed to ask whether attitude influences behavior: 
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Finally, in our fourth example, we have experimental data in which we had a 2 × 2 ANOVA with 
four groups of consumers.  Half the groups saw a high price, and half a low price.  Half the groups 
saw the presence of advertising with half seeing no advertising.  There is also the potential 
interaction of these two factors.  Two measures were y·1; an affective response and y·2; a cognitive 
response. The hypothesis concerns the one degree of freedom interaction between price and 
advertising.  Does such an interaction occur for affect and cognition?   
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8.16 Hypothesis and Error Sums of Squares and Cross-Products 
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In the univariate linear model, we calculate the hypothesis sum of squares, which is a scalar that 
corresponds to the single dependent variable.  The following equation produces the sum of squares 
and cross products matrix for the hypothesis embodied in Equation (8.40).  As such, it is the 
multivariate analog to the univariate version presented in Equation (6.17): 
 
 )ˆ(])([)ˆ( 11 CMBAAXXACMBAH −′′′−= −− . (8.41) 
 
The result is l by l with l being the number of columns of  M and C, or in other words, the number 
of transformed dependent variables in the hypothesis in Equation (8.40).  The error sums of 
squares and cross-products for the hypothesis, in contrast to the single sum of squares for the 
univariate version in Equation (5.22), is also an l · l matrix:  
 
 E = M′ [Y′Y - Y′X(X′X)

-1
X′ Y] M . (8.42) 

  
Again in the univariate case, in Equation (6.18) we formed an F-ratio using the sum of squares for 
the hypothesis, and the sum of squares for the error.  Modifying the form of Equation (6.18) 
somewhat, we can express the calculated F as  
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In the multivariate case we will do something similar, but the degrees of freedom are absorbed 
into the multivariate tables.  But more importantly, since E

-1
H is an l · l matrix, we must decide 

how to summarize all of those numbers in a way that allows us to make an all-or-nothing decision 
about the hypothesis in Equation (8.40).   
 
Eigenstructure affords an optimal method for summarizing a matrix, and in Section 8.8 we studied 
the eigenstructure of asymmetric matrices like E

-1
H.  We are now ready to test our multivariate 

linear hypothesis.  
 

8.17 Statistics for Testing the Multivariate General Linear Hypothesis 
 
If we define s as the rank of E

-1
H, we then have the eigenvalues λ1 , λ2 , ···, λs of the system 

 
 (E

-1
H - λI)x = 0. (8.43) 

 
In general, s = Min(q, l), that is, whichever is smaller, the number of rows of A or the number of 
columns of M.  The eigenstructure of H(H + E)

-1
 will be of interest also:  

 
  [H(H + E)

-1
- θI]x = 0 (8.44)  

 
with  
 

 
i

i
i 1 λ+

λ
=θ  (8.45)  

 
so that  
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 .
1 i

i
i θ−

θ
=λ  (8.46) 

 
In a logical sense, the λi are analogous to F ratios, being the eigenvalues of E

-1
H, while the θi are 

more analogous to squared multiple correlations, being the eigenvalues of H(H + E
-1
).  Now there 

are four different ways to test the multivariate hypothesis, proposed by four different statisticians.  
In addition, there is an F approximation that is somewhat commonly used as well.  The four are:  
 

Hotelling-Lawley Trace  ∑λ=−
s

i
i

1 )(Tr HE  (8.47)   

 

Roy's Largest Root 
1

1
1 1 λ+

λ
=θ  (8.48) 

 

Pillai's Trace ∑∑ λ+
λ

=θ=+ −
s

i i

i
s

i
i

1

1
])([Tr EHH  (8.49) 

 

Wilk's Lambda ∏ λ+
=

+
=Λ

s

i i1
1

||
||
EH

H  (8.50) 

 
An especially good set of tables for these statistics can be found in Timm (1975).   
 
The F approximation is based on Wilk's determinantal criterion in Equation (8.50).  That formula 
is  
 

 
q

u2rt1F t/1

t/1

l
−

⋅
Λ
Λ−

=′  (8.51) 

 
where, as before, q is the number of rows or the rank of A, l is the number of columns or the rank 
of M, but there are some other parameters.  The values  
 

 
4

2qu −
=

l , 

 

 ,1qknr
2

l +−
−−=  

  

  
 
and n is the sample size while k is the number of columns of X.  The degress of freedom for F′ are 
l · q in the numerator and rt - 2u in the denominator.  The approximation is exact if s = Min(l, q) ≤ 

t = 

l 2 q2 - 4 
l 2 + q2 - 5 

1 

if l 2 + q2 – 5 > 0 

if l 2 + q2 – 5 ≤ 0
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2, which is to say that the rank of E
-1
H is 2 or less.  You will note the eigenstructure discussed in 

Chapter 3 is a special case of the following discussion with E = I.   
 
Earlier, in Section 8.4, we spoke of correcting a statistical test for having a large number of tests 
and also for post hoc data snooping.  If we consider the hypothesis  
 
 H0: a′Bm = 0 
 
where we try to pick the elements in the vectors a and m to make the significance test as large as 
possible, then maxθ̂ , from Equation (8.3) is Roy's largest root.  Unlike the Dunn-Bonferroni 
approach, the Union-Intersection approach controls for a high number of tests and also takes into 
account the correlations between the dependent variables. Another example would be where we 
try to maximize the correlation between a linear combination of x variables and a linear 
combination of the y variables.  This is called canonical correlation.   

8.18 Canonical Correlation 
 
In the multivariate general linear model, since there are p elements to the y vector and the k 
variables in the x vector, we face an embarrassment of riches in trying to summarize the 
relationship between the two sets of variables. Shown below, we see the partitioned matrix of all 
the variables, partitioned into y and x sets:  
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

xxxy

yxyyR
RR
RR

 

 
The p · k matrix Ryx certainly has information in it about the relationship between the two sets of 
variables, containing as it does, the correlations between the sets.  But in order to summarize the 
relationship between the two sets, we want a scalar.  One obvious approach is to create new two 
new scores, one from the x set and one from the  y set such that the correlation between the two 
scores is as high as possible.  In essence, the problem is to pick the p elements of c′  in  
 
 u = c′zy (8.52) 
 
and the k elements of d′ in  
 
 v = d′zx (8.53) 
 
such that  
 

 
dRdcRc

dcR

xxyy

2
yx2 )(
′⋅′

=ρ  (8.54) 

 
is maximized.  This leads to two different eigenvector problems,  
 
 0]I[ 2

xy
1

xxyx
1

yy =ρ−−− cRRRR  (8.55) 
 
and 
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 .0]I[ 2
yx

1
yyxy

1
xx =ρ−−− dRRRR  (8.56) 

 
We can pick the smaller problem to solve and then deduce the other eigenvector using either 
 

 cRRd xy
1

xx2

1 −

ρ
=  (8.57) 

 
or 
 

 .1
yx

1
yy2 dRRc −

ρ
=  (8.58) 

 
The canonical correlation can be thought of as a linear hypothesis of the form of Equation (8.40) 
with  
 

 kAk* ][

1000

0100
0010
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⎢
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=

L

LLLLL

L
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and M = pIp.  The number of canonical correlations and eigenvector combinations depends on s, 
which in this case is simply whichever is smaller, k or p.  The first canonical correlation squared 
corresponds to Roy's Largest Root in Equation (8.48), which can be used to test the hypothesis 
that the canonical correlation is zero.  One can also use Pillai's Trace [Equation (8.49)] to test 
whether all of the canonical correlations are zero, i. e.  
 
 H0: .02

s
2
2

2
1 =ρ==ρ=ρ L  

 
Placing each of the eigenvectors, a·1, a·2  , ···, a·s into columns of the matrix A (not the hypothesis 
matrix), we have rows of A that correspond to y variables and columns of A that correspond to 
different canonical variables from Equation (8.52).  We can standardize the elements of A using  
 
 Cs = C(C′RyyC)

-1/2
 

 
and for the x set we have  
 
 Ds = D(D′RxxD)

-1/2
. 

 
It is also instructive to look at the correlations between each of the canonical variables in Equation 
(8.53) and the variables of the x set, and the canonical variables in Equation (8.52) and the 
variables of the y set.  We have for each combination 
 
 ,),(Cov yysy RCzu ′=  
 
 ,),(Cov xxsy RDzv ′=  
 
 ,),(Cov yxsx RCzu ′=  
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 .xysy ),(Cov RDzv ′=  

8.19 MANOVA 
 
We will begin with an example with a purely between subjects design, and two different 
dependent variables. Imagine that we have four groups of subjects, each group having seen a 
different advertisement.  Thus, k = 4 with x·0 being the usual vector of constants and x·1,  x·2 and x·3 
coding for group membership.  To keep things simple, lets say that y·1 contains the respondent's 
answer to the question, "How much do you like the product?" while y·2 has data on "Intention to 
buy."  In summary, Y is n · 2, X is n · 4 and B is 4 · 2 with  
 
 .ˆ XBY =  
 
It would be natural to test the hypothesis of no group differences for the two dependent variables.  
This hypothesis is much the same as canonical correlation, its just that the emphasis is slightly 
different.  We calculate the hypothesis sum of squares and cross product matrix 
 
 ),ˆ(])([)ˆ( 11 CMBAAXXACMBAH −′′′−= −−  
 
with 
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1000
0100
0010

A  

 
and M = 2I2 and the error sum of squares and cross products matrix,  
 
 E = M′ [Y′Y - Y′X(X′X)

-1
X′ Y] M,  

 
invert this latter matrix in order to find the eigenvalues of E

-1
H, calculate the four criteria and the 

F approximation, and see to the fate of H0.  In addition, the eigenvectors for the y set,   
 
 v = d′y, 
 
can tell us the optimal combination of y's for detecting group differences.  Similarly, the 
eigenvectors for the x set reveal the best possible contrast among the group means.   

8.20 MANOVA and Repeated Measures  
 
To start off this section, we will pick an example with no grouping variables, just one group of 
consumers who rate a product using the same scale under p = 3 different scenarios.  The 
multivariate model is then  
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ŷŷŷ
ŷŷŷ
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To test the hypothesis that all scenarios lead to equal ratings, we use  
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We can conceptualize the process here a little bit differently.  For each subject, you could 
transform the scores prior to the analysis by applying the M hypothesis matrix directly to the Y 
matrix.  In that case, you could simply test whether the β0 values of the transformed measures 
were zero.  So if we define  
  
 XBY =

~  
 
where M is exactly as before, and now we test to see if  
 

 ]00[
10
01

]~~[1:H 02010 =⎥
⎦

⎤
⎢
⎣

⎡
ββ⋅  

 
where the parameters 01

~
β  and 02

~
β would be estimated from Y~ instead of Y.  Both approaches are 

equivalent because the hypotheses  
 
 0:H

21 y~y~0 =μ=μ  (8.59) 
 
and  
 
 

321 yyy0:H μ=μ=μ  (8.60) 
 
are equivalent.  Using the transformed dependent variable matrix Y~ and testing the Hypothesis of 
Equation (8.59) is an example of Hotelling's Τ

2
 (pronounced Tao Squared), which is the 

multivariate analog of the household variety t-statistic.  The Τ
2 is used to test hypotheses of the 

form  
 
 H0: μy = c 
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with μy being the vector of population means for the dependent variables.  Hotelling's Τ
2
can also 

be used to test multivariable mean differences across two groups, just as the t does where there is 
but one dependent variable.   
 
Now we put together an example where there are different groups of subjects as well as repeated 
measurements.  As before, we assume that all subjects rate a product under p = 3 different 
scenarios.  But now there are actually four different treatment groups, each group having seen a 
different advertisement for the product.  In that case, k = 4 so that the B matrix is 4 by 3.  Each 
column of B corresponds to one of the three rating scenarios.  The first row of B contains the 
intercept terms, while the next three rows pertain to group differences.   
 
Is there an impact of advertisement?  In the univariate approach, we add up the three measures to 
create for each subject i, y~ = y1 + y2 + y3. We test the hypothesis using  
 
 cβA =

~:H0  
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which is covered in Chapter 7. In the multivariate approach covered in this chapter, we do not 
transform the dependent variables, we leave them as they are.  We have  
 
 CABM =:H0  
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This approach confounds the main effect of group with the simple main effect of advertisement on 
y·1 , on y·2 and on y·3.  In other words, from column 1 of Y we look to see what effect there is of 
group membership, we do the same thing with columns 2 and 3.  But this claims some of the 
variance that would ordinarily be considered part of the advertisement × scenario interaction.  The 
main effect of advertisement would generally look only at a summary of the group differences 
holding the scenario constant.   
 
Is there an effect of scenario?  Here we start with the univariate approach.  If we define  
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and assume that  
 
 IΣMM 2σ=′  
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as we did in Equation (7.12), we can utilize the univariate approach to repeated measures and use 
the F-test discussed in Section 7.7 with an error term of subjects × scenario interaction.  In the 
univariate approach all scores are placed in a single column vector.  In contrast, in the multivariate 
case each scenario constitutes a different column of Y and we test  
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There also exists an approach in between the univariate and multivariate methods.  One could Test 
 
 IΣMM 2

0:H σ=′  
 
and pick the univariate approach if you fail to reject and the multivariate approach if you reject.  
Another approach was proposed by Greenhouse and Geisser  (1959) who suggested that we could 
correct the univariate F to the degree that  
 
 .ˆ 2ISMM σ≠′  (8.61) 
 
Here in Equation (8.61) we have replaced Σ with it's estimator, S.   
 
If we wish to test the advertisement × scenario interaction according to the univariate approach, 
we would need to assume that M′ΣM = σ

2
I, place all scores in the vector y, and use the interaction 

of  subjects × scenario as the error term.   
 
In order to test the advertisement × scenario interaction according to the multivariate model, we 
can combine the A matrix from the advertisement main effect and the M matrix from the scenario 
main effect.  In that case we have  
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8.21 Classification 
 
To motivate this section, which will discuss the technique known as the discriminant function, we 
begin the discussion with a little two group example.  Imagine we are trying to decide who to 
include in direct mailing.  Our goal is to classify our customers into two groups based on whether 
they will, or will not, respond to the mailout.  From a sample of our customer base, we have 
collected some data which we will get to in just a minute.  For now, we note that the cost, or 
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disutility, of misclassifying someone in group i, mistakenly placing them in group j is cij. Given 
our two groups, we might then tabulate the cost matrix as  
  

  Classification Decision 
  Group 1 Group 2 

Group 1 0 c12 Reality Group 2 c21 0 
 
For each individual we have a p element row vector from the matrix Y, ,i⋅′y  containing numeric 
variables.  The probability density for the individuals in group j is fj(yi·), while πj is the relative 
size of group j, also called the prior probability.  The conditional probability an individual with 
vector yi· comes from group j is  
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We want to minimize our expected cost which in the two group case is given by  
 
 21i12i c)|2Pr(c)|1Pr( ⋅⋅ + yy  
 
and we can decide that individual is in group 1 if  
 
 f1(yi·) · π1  · c12 > f2(yi·) · π2 · c21 

 
or rearranging we can say that we should decide that the individual is in group 1 if  
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If the πj are unknown or assumed to be equal, and c21 = c12, then it is only the right hand side of the 
above Equation (8.62) and what matters is the relative height of the two densities.  The crossover 
point of Equation (8.62) would be the place where the densities themselves cross over. 
 
The usual assumption is that an observation vector from group j 
 
 yi· ~  N(μj,  Σj) 
 
which implies from Equation (4.17) that  
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Taking Equation (8.62) and taking logs to both sides, we would then place a case in group 1 if  
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If we assume that Σ1 = Σ2 = Σ the above expression simplifies to     
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To get to this point it helps to realize that (a - b)′C(a - b) = a′Ca - 2a′Cb + b′Cb and that (a + 

b)′C(a - b) = a′Ca - b′Cb.  Noting also that ,
a
bln

b
aln −= if we substract 
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of the above equation we get  
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Define the left hand side of this last equation as ν12. Our decision to place a case in group 1 is 
made if  
 ν12 > 0. 
 
For population 1 we have  
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which is known as the Mahalanobis distance between the mean vectors of the two populations.  
Knowing the distribution of ν12 allows us to estimate the probability and the total costs of 
misclassification.  We also define the raw discriminant function as  
 
 ν = d′yi·  
 
where  
 
 d = Σ

-1
(μ1 -  μ2). 

 
We can also standardize the function using  
 
 ⋅⋅

− ′=′Δ=ν isi
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12s ydyd  
 
Back to the decision,  
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Rearranging, our decision "1" is taken if  
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or in the standardized version  
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The discriminant function maximizes the separation between the values ,and 21 νν the means for 
the two groups on the discriminant scores.  When we don’t know the μj or Σ, we split our samples 
into validation and holdout samples.    

8.22 Multiple Group Discriminant Function 
 
The problem can be approached as a special case of MANOVA.  For example, assuming that we 
have k = 4 groups with p discriminating dependent variables, and the general linear hypothesis  
 
 H0: ABM = 0,  
 
 we would use the hypothesis matrix  
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with M = I.  Just as we did before in Equations (8.41) and (8.42), we would calculate the 
hypothesis and error sum of squares matrices H and E.  In order to find a score, ν = d′yi·, with ν 
have as large a between groups sum of squares as possible, we will utilize the eigenstructure of 

HE 1− as before.  We pick values in the vector d such that our F test for group differences on ν is 
as large as possible.  In other words, we maximize the between groups sum of squares for  ν 

divided by it's within groups sum of squares, that is to say ,
Edd
Hdd
′
′

over all possible values of a.  It 

is customary to scale a such that the within-group variance (mean square) is  
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