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Chapter 13: Random Utility Models 
 
Prerequisites: Sections 12.1 - 12.4 

13.1 Some Terminology and a Simple Example 
 
The subject of this chapter is a type of model known as a Random Utility Model, or RUM.  RUMs 
are very widely applied marketing models, especially to the sales of frequently purchased 
consumer packaged goods; in other words; the kind of stuff you see in a supermarket.  All of the 
models in this chapter logically follow from Thurstone’s Law of Comparative Judgment that we 
covered in Chapter 12.  However, in this chapter we will consider the situation in which 
consumers pick one brand from a set of more than two brands, and we will also contemplate 
distributions other than the normal.  We can summarize the assumptions of Thurstone’s Law, and 
of the models in this chapter, as follows:  
 
Assumption one is that choice is a discrete event.  What this means is that choice is all-or-nothing.  
The consumer, as a rule, cannot leave the supermarket with .3432 cans of Coke and .6568 cans of 
Pepsi.   They will tend to leave with 1 can of their chosen brand, and 0 cans of their not chosen 
brand.  Thus choice is not a continuous dependent variable.   
 
Assumption two is that the attraction or utility towards a brand varies across individuals as a 
random variable.  In Thurstone’s Law, we called this the discriminal dispersion and we assumed it 
was normal.  By using the term utility, we are being consistent with economic theory.  We also 
fequently use the term attraction, we are being consistent with the retailing literature.  In any case, 
assumption two is all about the word “random” in the label random utility model.   
 
The last assumption is that the consumer chooses the brand with the highest utility.  This makes 
our consumer an economically rational being.  Thank goodness.   
 
In general, we will be concentrating on the class of RUMs known as logit models.  These are 
models that make a distributional assumption different than the normal and lead to much simpler 
calculations.  In the next sections we will be introduced to the logit model in all its glory.  But 
before that happens, here is a list of other important terms that will come into play: 
 
Dichotomous dependent variable – any dependent variable capable of taking on exactly two 
discrete values. 
 
Polytomous dependent variable – any dependent variable capable of taking on exactly J > 2 
discrete values.   
 
Income type independent variable – a variable that varies over consumers.  A logit model 
incorporating only income type variables is sometimes be called a polytomous logit model.     
 
Price type independent variable – a variable that varies over consumers and brands.  A logit model 
with at least one of these is often called a conditional logit model.  We might note here however, 
that there is no difference in the way we treat price and income variables if we are looking at a 
dichotomous dependent variable.  The difference only comes into play when there are three or 
more possible choices.   
 
Aggregate data – data that have been summarized for each unique combination of the independent 
variables.  To keep things simple, let us say we have just one independent variable; coupon value; 
and that there are exactly four different values.  For each coupon value, we might count up how 



Random Utility Models  169 

many people buy the product (that is, use the coupon) and how many do not.  The choice 
probabilities for each of the four coupon values constitute the data analyzed as the dependent 
variable.  We would obviously have four data points, each point being two numbers: the choice 
probability and the value of the coupon.  We can estimate this sort of data using either Generalized 
Least Squares or Maximum Likelihood.   
 
Disaggregate data – raw data consisting of individual choices.  It is possible that each observation 
has a unique combination of values on the independent variables.  Maybe there are hundreds of 
different coupon values and hundreds of different possible prices.  Each data point might come 
from a single individual, with a one signifying that that person bought the product, and a zero 
signifying that that person did not buy.  Disaggregate data can only be analyzed by ML.   
 
We are going to start with a simple example involving retail choice.  In the small southern city of 
Rome, Alabama, there is a hypothetical food store that carries hard to find Italian items.   A 
sample of individuals was asked, “Do you shop at the Negozio?”  We define the dependent 
variable such that  
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for person i.  We can also define xi as the distance between person i’s residence and the Negozio.  
Of course, we will need to also define ei as a random, independent error.  We could use the linear 
model of Chapter 5 to fit this model.  In that case we would have  
 
 yi = β0 + xiβ1 + ei (13.2) 
 
 .x)y(Eŷ 1i0ii β+β=≡  (13.3) 
 
Now we are going to define the probability that individual i chooses (has chosen) the store and the 
complement of this probability.  For the former, we will use the notation pi1 and for the latter pi2.  
Given this notation, we can say that the predicted choice probabilities are  
 
 and]YesPr[]1yPr[p̂ i1i ===  (13.4) 
 
 .]NoPr[]0yPr[p̂ i2i ===  (13.5)  
 
It should be clear that .p̂1p̂ 1i2i −=   It must also be the case, given the definition of what we mean 
by expectation that  
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Combining this result with Equation (13.3), we conclude that  
 
 .xp̂ 1i01i β+β=  (13.6) 
 
There are two problems with this conclusion.  First, a choice probability, really; any probability; 
has to obey the rule  
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 1p̂0 1i ≤≤  (13.7) 
 
but there is no requirement that ordinary least squares estimation will produce predicted values 
between 0 and 1.  In other words, OLS may produce logically inconsistent choice probabilities.  A 
second important feature of probabilities is that  
 
 1p̂p̂ 2i1i =+  (13.8) 
 
but again, we are not guaranteed that regression will produce complementary probabilities that add 
up to 1.  In other words, the predicted values are not sum constrained.  There is also a third 
problem.  With OLS regression we make the Guass-Markov assumption [Equation (5.16)] in order 
to perform hypothesis testing.  Specifically, in regression we generally assume ei ~ 
N(0, )2

iσ with 2
iσ  = σ

2
 for all i, that is; e ~ N(0, σ

2
I).  But in the model we are now examining, 

there are exactly two possible values for ei – 
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By the definition of variance [see Equation (4.7)], we have 
 
 V(ei) = E[ei – E(ei)]

2 
(13.10) 

 
but since E(ei) = 0, the expression above simplifies to ).e(E)e(V 2

ii =  And combining Equations 
(13.9) and (13.10) we see that  
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Note that since ei is discrete, we use Equation (4.2) for its expectation.  Combining the equation 
above with Equation (13.6) implies 
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But now we have a problem.  The formula for the variance of the error has the independent 
variable on the right hand side.  What’s more, that independent variable has the subscript i hanging 
off it.  How can the variance of ei be the same for all i when it depends on xi?  It cannot – we have 
heteroskedasticity of error variance.  Our OLS parameter estimates might be unbiased and 
consistent, but they are not efficient.  Standard errors and significance tests do not hold.  Although 
by definition, OLS produces the smalleset sum of squared error that can be, we have now 
uncovered three problems with using it for choice data: logical inconsistency, the lack of the sum 
constraint, and heteroskedasticity.  Some simply find it inelegant to use a procedure capable of 
predicting a probability of less than zero or more than one.   
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There are a number of ways to fix these problems.  You could at least take care of the logical 
inconsistency by using the linear probability model.  This model simply forces iŷ to 0 and 1 
whenever it shows up outside the range:  
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A second more theoretically grounded model is the Probit model.  The probit model uses the same 
assumptions of the Thurstone model as presented in Chapter 12 namely that the utility of each of 
the choice options is normally distributed.  In that case, we have  
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We could linearize the model by applying the PROBability Inverse Transform, or PROBIT 
transform (i.e. Φ

-1
) and see the meaning of the name of this technique, as well as use unweighted 

least squares on the resulting z scores 
 
 [ ] .xẑp̂ 1i01i1i

1 β+β==Φ−   
 
Unweighted least squares would not solve the third problem, namely heteroskedasticity.  There are 
a variety of other estimation schemes for probit regression that would deal with this problem, but 
now we turn our attention to a very widely used model for choice data, the logit model.  Note that 
in Equation (13.12) the appearance of the function Fp.  Another version of this F function might be 
based on a transformation other than the normal or probit. This is illustrated below: 
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FL is called the logistic function and so the model is sometimes called logistic regression.  A 
visual representation is given below:  
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The logistic function is highly similar to the normal ogive.  There are some important differences 
between it and the normal when there are more than two choice objects, but we will get to that 
topic later.  For now, you might note that you can interpret the sign of the β in much the same way 
that you can in ordinary regression.  A positive β implies that the choice probability goes up as x 
goes up.  When dealing with this function, we can make the notation cleaner by defining ui = β0 + 
xiβ1 so that  
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which shows another way to write the model.  In general, we will use the previous version,  
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As such, lets look at the probability that the respondent does not go to the store.  That is  
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Now look at the expression for 1ip̂  in Equation (13.14) and for 2ip̂  in Equation (13.15).  In effect 

we have a/(a+b) for the one and b/(a+b) for the other, with 1 and iue playing the roles of a and b.  
The logistic model is a special case of Bell, Keeney and Little’s (1975) Market Share Theorem 
and what Kotler (1984) once called the Fundamental Theorem of Market Share.  We can make 
this theorem more general by using the following notation:  
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In our case, there are J = 2 brands, ai1 = iue and ai2  = 0e = 1.   
 
The logit model is not a linear model but it can be linearized.  Repeating the model, 
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and multiplying both sides by 2ip̂1 , the reciprocal of Equation (13.15), yields  
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Now, we can take logs to get  
 
 .xu)p̂p̂ln( 1i0i2i1i β+β==  
 
The left hand side is called a logit.  You can transform your choice probabilities into logits and fit 
a linear model using unweighted least squares.  This, at least, solves both the logical consistency 
issue and the lack of sum constraint when OLS regression is applied to raw probabilities.  It does 
not deal with the issue of efficiency, however.  For that we will need to contemplate weighted 
least squares or maximum likelihood.   

13.2 Aggregate Data 
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Imagine that we have a table of data, a table of different groups really.  Our table might look like 
the one below, which shows N populations and the frequency of Yes’s and No’s within each 
population: 
  

 Response  
Population Yes (yi = 1) No (yi = 0) x 

1 f11 f12 x1 

2 f21 f22 x2 

… … … … 
i fi1 fi2 xi 

… … … … 
N fN1 fN2 xN 

 
In the table, fi1 is the frequency with which members of group i say Yes, or simply put, the number 
of people living at distance xi from the Negozio who go to that store.  In what follows, it will be 
useful to define  
 
 ni = fi1 + fi2 
 
 pi1 = fi1 / ni 
 
 )p̂p̂ln(ˆ

2i1i12,i =l  
 
and analogously,  
 
  
 .)ppln( 2i1i12,i =l  
 
Of course, the distinction between 12,il and 12,îl is important.  The first one is the observed logit and 
the second one is the logit as predicted by the model.  Even when the model holds in the 
population studied, sampling error will see to it that they are not identical. To make an analogy to 
regression, we can say  
 
 )ˆ(x 12,i12,i1i012,i lll −+β+β=  . 
 
Without proof, let me claim that  
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and that  
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In summary, what this means is that in our model,  
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 ),ˆ(x 12,ii/121i012,i lll −+β+β=  
 
the error term in parentheses has  
 
 0)ˆ(E 12,i12,i =− ll and 
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What’s more, it can be shown [this is related to but not the same as Equation (6.2)] as ni → ∞  
 
 [ ]2i1ii12,i12,i p̂p̂n1,0N~l̂l −  (13.18) 
 
and in fact the approximation to the normal is already quite close by the time ni ≥ 30.   

13.3 Weighted Least Squares and Aggregate Data 
 
Under ordinary circumstances, E(yi - β0 + xiβ) has the constant variance σ

2
, and we minimize, as 

in Equation (5.21), 
 
 2

i
1i0iError )xy(SS ∑ β−β−= . 

 
The residual in our case, that is the term in parentheses above, has variance 2i1ii p̂p̂n1 which is 
clearly not a constant, since the subscript i appears in the term.  In three places!  We can, however, 
use this knowledge to stabilize the variance.  We will create a set of weights consisting of the 
reciprocal of the variance of each observation.  Specifically, we define  
 
 2i1iii p̂p̂nw =  
 
as the weights that we will use in the weighted least square (WLS) formula SSError formula below 
 
 2

i
1i0iiError )xy(wSS ∑ β−β−= . (13.19) 

 
Here we might note that the weights serve to emphasize or de-emphasize the influence of a 
particular observation depending on its sampling variance.  The higher the variance, the less 
influence the observation has in the determination of the SSError.   
 
At this time we are going to shift into matrix notation so as to come up with a more general 
expression for WLS.  Lets say that we have one independent variable, as before, consisting of 
travel distance to our shop in Rome, AL.  Call that variable x⋅1.  A second independent variable 
might be the family income of each respondent, x⋅2.  Then  
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and  
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Note that the X matrix has N rows, with an upper case N used to maintain a distinction between 
the number of populations, and ni, the number of observations within each population i.  Now we 
can write our model as  
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or using the logit expression,  
 

 βx ⋅′== i
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This second way of expressing the model is convenient for estimation using the linear model.  To 
do so, we begin by stacking the predicted and observed logits from each of the N populations into 
the vectors  
 
 [ ]12,N12,212,1
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 [ ]12,N12,212,1 lll L=′l . 
 
The model is then  
 
 Xβ=l̂  (13.23) 
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Now, we take the variances for each term 12,i12,i l̂l − and place them into the covariance matrix V as 
diagonal elements:  
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Also note that we can relate the elements of this matrix to the previous scalar notation in Equation 
(13.19) because  
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In matrix terms, our objective function is  
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The f function, at its minimum, is distributed as χ

2
 when the model holds in the population.  Thus, 

it serves as a test of the null hypothesis that the model is correct.  This is basically the same 
approach we used in Equation (12.19), with Minimum Pearson χ

2
.  If we were to replace the s'p̂ in 

the V matrix with p’s, we would have Modified Minimum χ
2
.  When we set ∂f/∂β = 0 we find  

 
 l111 ][ˆ −−− ′′= VXXVXβ  
 
as the GLS parameter estimates.  Since V(l) = V=− )ˆ(V ll we further find that  
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Following the same line of reasoning that we used in Section 6.8 (and also Section 17.4), we can 
use the above matrix for confidence intervals or to test hypotheses of the form 
 
 H0: βj = 0 
 
or more generally  
 
 H0: a′β - c = 0 
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and create the usual t-statistic with the denominator being formed by the scalar 
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For multiple degree of freedom hypotheses of the form  
 
 H0: Aβ - c = 0  
 
we use  
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and for error,  
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13.4 Maximum Likelihood and Disaggregate Data 
 
With disaggregate data, we have household level observations.  For the time being we return to the 
relatively simple case of a single independent variable, our distance measure from household i to 
the store.  It is quite possible that each household has a unique value on this variable, especially if 
it is measured as a continuous variable.  In addition, for each household we have a 1 if that 
household goes to the store and we have a 0 otherwise.  Modifying our sample size notation once 
again, lets say we have N households altogether, with N1 of them having said “Yes” and being 
scored with a ‘1’ on the dependent variable, and N2 of them having said “No.”  The model for the 
choice probability stays the same as before, we have just returned to the situation of a single 
independent variable for now, 
 

 

,
1

x1

x
p̂

i

i

11i0

11i0

1i

e
e

e
e

βx

βx

⋅

⋅

′

′
=

β+β

β+β
=

+

+
 

 
but our objective function will be quite different. To begin creating the objective function, we 
might consider sorting the data into two piles: in the first pile we place the N1 households saying 
“Yes” and in the second, the remainder who have said “No.”  We note that under the model, the 
probability of observing our N1 Yes’s and the rest of the sample with its No’s, is  
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assuming that each observation is independent of all the others.  This notation emphasizes the fact 
that there are two piles of observations: the first which consists of households going to the store, 
and the second consisting of those who do not frequent the place.  Another way to write the 
likelihood is perhaps more clever, and relies on the fact that we have decided to score yi = 1 if 
household i buys from the store and yi = 0 if it does not.  Rewriting l0 we have  
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which takes advantage of the fact that for any value a, a

1
 = a while a

0
 = 1.  This second form 

avoids having to sort the observations.  However, returning to Equation (13.25), we can flesh out 
the predicted choice probabilities.  When we do that, the likelihood is seen as  
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Since the maximum of the likelihood occurs at the same place as the maximum of the log 
likelihood, we will take logs and get 
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To go from the previous expression for l0 in Equation (13.27) to the second line of Equation 
(13.28) for L0 immediately above requires that you notice the denominator is identical for 
both ,p̂andp̂ 2i1i and that ln(1) = 0.  That explains why the first summation in Equation (13.28) 
goes to N1 and the second goes all the way to N.  We now wish to set  
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and solve for 10

ˆandˆ ββ using nonlinear optimization as is discussed in Section 3.9.  To that end, 
the second order derivatives are quite useful.  These provide additional information about the 
search direction.  But what’s more, they can be used to figure out the covariances and variances of 
the ML parameter estimates, which allows us to do hypothesis testing.  For example, lets start with 
∂L0/∂β0, and think of it as a function of the value of β1.  How does ∂L0/∂β0 change as β1 changes?  
The limit of the slope of ∂L0/∂β0 (treated as a “dependent variable” in the calculus sense) on β0 
(treated as the “independent variable”) is the second order derivative and it may be written 
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Think of this as element h12 and h21 in the symmetric H matrix, called the Hessian. Element 1, 1 is  
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and of course element 2, 2 would be defined analogously. Minus the expectation of the Hessian is 
called the Information Matrix, i. e. –E(H).  Finally, the inverse of the information matrix gives us 
the variance-covariance matrix of the unknowns, which is to say  
 
 1)](E[)ˆ(V −−= Hβ . 
 
We can now test hypotheses using this matrix to provide the denominator of the t-statistic.   Note 
that the Hessian is square and symmetric, and it will have one row (and one column) for each 
unknown parameter.   
 
A final observation, before we start thinking about what happens if we have three choice options 
as opposed to only two, is that we can create an R2 like statistic by comparing the log likelihood of 
the model, with the log likelihood of a model that consists only of β0, that is, it has no real 
independent variables.  This is illustrated below:  
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where *

0L is the likelihood under the model with just an intercept.   

13.5 Three or More Choice Options 
 
The situation with three or more brands, or three or more store choices, or Web links, etc., is rather 
more complicated than the two option case.  Of course, we can say that  
 
 pi1 + pi2 + pi3 = 1 
 
so at least we know something about the situation.  However, there are now three potential logits: 
ln(pi1/pi3), ln(pi2 /pi3) and ln(pi1/pi2). But  
 

 
3i

2i

3i

1i

2i

1i

p
pln

p
pln

p
pln −=  

 
so one logit is redundant in the same sense that one of the three choice probabilities is not 
independent of the other two: if you know two of the probabilities you can figure out the third by 
subtracting the total of the other two from 1.  With J brands, we will create J – 1 generalized 
logits.  It is traditional to use the last brand, often a store or generic brand, as the denominator.  
The full model, called the Multinomal Logit model or MNL model is given below:  
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 (13.29) 

 
where pij is the choice probability for brand j (j = 1, 2, ···, J) for case i.  In this context i could 
either index populations, as would be the case with aggregate data, or individuals, which would be 
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the case with disaggregate data.  The vector ijx′  provides values for the independent variables for 
brand j, observation i, while the vector βj contains the unknown parameters for each independent 
variable for brand j.  We can express the model as a special case of the Fundamental Theorem of 
Market Share,  
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 )exp(a jijij βx′= . 
 
By tradition, we set the attraction for the last brand, brand J, equal to 1, i. e. aiJ = 1 for all i, and 
thus ].000[J L=′β   For ML estimation we pick elements of the βr vectors to maximize  
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where we have sorted the cases into J piles corresponding to the choice option picked by that 
individual.   

13.6 A Transportation Example of the MNL Model 
 
The following example is inspired by, but not identical to, an actual dataset reported in Currim 
(1985), who considered the choice faced by household i between getting to work by car (1), bus 
(2), or using the metro (3).  Our explanatory variables are  
 
  Ii  Income of household i 

j
iC   Cost (price) of alternative j for household i 

 CAVi  Cars per driver for household i  
 BTRi  Bus transfers required for member of household i to get to 

work via the bus 
 
One possible model for this situation might be   
 

 4i3
3
i

1
i1i1

3i

1i CAV)CC(I
p̂
p̂ln β+β−+β+α=  

 

 5i3
3
i

2
i2i2

3i

2i BTR)CC(I
p̂
p̂ln β+β−+β+α= . 

 
Now we will have an opportunity to put into play some of the terminology we looked at in the 
beginning of the chapter but have not used up to now.  Lets look at the role of income in this 
model.  Income is constant across the choices that a family can make, but in the two logits, income 
has a different coefficient (β1 and β2).  The quality of the choice option might vary, and so income  
may well contribute to families preferring choice 1 over choice 3, but it may lead to families 
preferring choice 3 over choice 2.   
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The price variable, ,C j
i  varies across choice options as well as households.  For one particular 

family, a car trip may be $4.00 (including depreciation), a bus trip might be $1.00 and a trip on the 
Metro could be $1.50.  But while j

iC  varies, the coefficient β3 is constant.  Such a variable is 
sometimes called generic.  McFadden calls this sort of structure the conditional logit model.  It is 
also known as the simple effects model.   
 
The variables CAVi and BTRi only apply to one alternative.  Thus they are called Alternative 
Specific Variables (ASVs).  The αj are also alternative specific variables.  To be specific, they are 
alternative specific constants (ASCs).  You might imagine a MNL model with only alternative 
specific constants .  This would be quite similar to a Thurstone model, such as the Comparative 
Judgment model discussed in Section 12.3, only in this case we have a distribution other than the 
normal.  In fact, in current context the ASCs function as a sort of error term.  They represent the 
attraction towards the brand that exists independently of any measured assets such as its price, etc.   
 
For GLS estimation it makes sense to create a single linear equation for the logits.  That equation 
would look like this:  
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 .ˆ Xβ=l  (13.30) 
 
On the other hand, the best way to represent the model if we were going to do ML estimation is to 
show it as the nonlinear equation for the choice probabilities as 
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13.7 Other Choice Models 
 
There are a variety of related alternative forms for choice models, but for each model discussed in 
this section, and more generally in this chapter with the clear exception of the probit model of 
Section 13.10, we will be assuming the Fundamental Theorem,  
 

 

∑
= J

m
im

ij
ij

a

a
p̂ . 



Random Utility Models  183 

 
We will be assuming that we have k marketing instruments, meaning that we have a set of 
marketing variables perhaps including price, advertising effort, distribution effort, or some product 
attributes.  The conditional or simple effects MNL is  
 

 )xexp(a
k

kijkij ∑ β= . (13.32) 

 
This model assumes that each marketing instrument has its own β coefficient, but each brand’s 
marketing efforts have the same result for marketing instrument k.  In other words, there is a β 
coefficient for each marketing instrument (price, place, etc.), but these are constant across the J 
brands.   
 
Another type of simple effects model has been championed by Cooper and Nakanishi (1988).  It is 
called the Multiplicative Competitive Interaction (MCI) model and looks like  
 

 ∏ β=
k

k
ijkij xa . (13.33) 

 
The MCI model follows in the footsteps of the economic Cobb-Douglas function of Equation 
(16.3), often used for demand equations for continuous dependent variables.  
 
We can also have differential effects models in which the impact of each brands varies.  Perhaps 
one of the brands is better than some of the others at leveraging its marketing efforts so it receives 
more benefit per dollar spent on advertising, to use that instrument as an example. There is a 
version of the differential effects model for the MNL,  
 

 )xexp(a
k

jkijkij ∑ β=  (13.34) 

 
and for the MCI:  
 

 ∏ β
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k

jk

ijkij xa . (13.35) 

 
You will note that the beta coefficients have a subscript for the brand in the above two models. 
Finally, there is the full extended model.  In the case of the MNL, this has been called the universal 
logit model:  
   

 )xexp(a
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mjkimkij ∑∑ β= . (13.36) 

 
There is also a fully extended MCI model,  
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k
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imk

m
ij x∏∏ β
=  (13.37)   

 
These include asymmetric cross effects of one brand on another.   
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13.8 Elasticities and the MNL Model 
 
How does our share change when we change the value of a marketing instrument?  Lets assume 
that we have a model with only one marketing instrument; price.  In line with Section 16.1, we 
define the price elasticity of market share for brand j as  
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for observation i.  According to the generic or simple-effects model,  
 
 [ ]β−+α= )xx(expa iJijjij  or 
 
 .)xexp(a ijjij β+α=  
 
In order to figure out the elasticity, we must start with the derivative,  
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In addition to the power rule and chain rule of the calculus (see Section 3.3), we need to note that  
 
 dea/da = ea  
 
and 
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In that case  
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so that the elasticity is then  
 
 .)p̂1(xe ijijij −β=  (13.38) 
 
Since xij appears in the expression for the elasticity, the elasticity is not constant and instead 
changes along the price-share curve.  The elasticity is also inversely proportional to the share 
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which makes sense – the higher your share already, the harder it is to drive it closer to one by 
dropping prices even more.   
 
For the simple effects MCI where ,xa ijij

β= we have 
 
 ).P̂1(e ijij −β=  
 
In contrast to the MNL model, the MCI model produces constant elasticities much like the Cobb-
Douglas function does for continuous dependent variables.   
 
Marketing scientists are often interested in the cross elasticity for brand j with respect to some 
other brand j′.  This quantity summarizes the extent to which the share of j depends on the prices 
set by the brand management of j′.  This reveals the nature and amount of competition among the 
brands in the choice set.  By definition, the price cross elasticity of share for brand j with respect 
to brand j′ is  
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The derivative for the simple effects MNL is  
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which makes the cross elasticity  
 
 β−= ′′′ jijijj,i xp̂e . (13.40) 
 
Since no j subscript appears on the right hand side, only j′, brand j′ has the same impact on all 
other brands.  This impact is proportional to the share of j.  For the differential effects model, i. e. 
aij = exp(αj + xijβj),  
 
 ,xp̂e jjijijj,i ′′′′ β−=  
 
each brand exerts a different pressure, but that pressure is the same on all the other brands.   
 
That brand j′ should exert the same pressure on all brands flies in the face of common sense.  We 
often think that some brands compete more with certain other brands and less with others.  This 
common sense notion is part of what is known as Independence of Irrelevant Alternatives.  
 

13.9 Independence of Irrelevant Alternatives 
 
Independence of Irrelevant Alternatives, or IIA as it is lovingly known, refers to the tendency of 
the Fundamental Theorem to model competition in a very symmetric way.  We will now discuss 
the issue of asymmetric competition.  Imagine that the transportation needs of a certain city are 
served by two companies: The Blue Bus Company and the Yellow Cab Company.  Imagine 
further that these two companies split the market in half with each getting a market share of 50%.  
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What would happen if a new competitor arrives, namely, the Red Bus Company.  The 
Fundamental Theorem would have us believe that the new market shares will be 1/3rd each.  Does 
this seem realistic to you?   
 
The universal logit model can handle asymmetric competition. Technically speaking, however, it 
is actually not a RUM!  The only other model in this chapter to be able to deal with the problem of 
IIA is presented next.   

13.10 The Polytomous Probit Model  
 
Again we will be concerned with the market share of brand j out of J different brands.  The utility 
of each brand is normally distributed over the consumers in the market.  Each individual picks the 
utility that is largest.  We will define our model as  
 
 y = Bx + ε 
 
where y is the J by 1 random vector of utilities described above, B is J by k and x is k by 1.  This 
model can include income or price type variables in x.  Their presence determines the appearance 
of B which, like in covariance structure models discussed in Chapter 10, or the ML MNL models 
discussed earlier in this chapter, can have zeroes in various positions.  The random input vector 
can be characterized by noting that  
 
 ε ~ N(0, Σ) . 
 
The share for brand j is  
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Now define .yy jj
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j ′′ −=ν  Now we simply rewrite the expression for the share of brand j as  
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For the next step, we will place all of the )j(

j′ν for each brand j′ ≠ j into the vector .)j(ν  The action of 
subtracting all of the other brands from brand j is obviously a linear operation.  We will illustrate 
this operation using brand 1 as our example.  Define the J - 1 by J matrix  
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for brand j = 1.  As we can see, this M matrix differences all of the other rows from the first row 
of any postmultiplying matrix.  So in particular,   
 
 yMν )1()1( =  
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and in general for brand j 
 
 .)j()j( yMν =  
 
Of course, Theorem (4.5) and Theorem (4.9) show us that  
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Therefore according to the multivariate normal distribution, presented in Equation (4.17), the 
share for brand j is   
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Share is equal to the probability that the utility for brand j exceeds the utility for all other brands,  
j′ ≠ j. 
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