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Chapter 17: Econometrics 
 
Prerequisites: Chapter 6, Sections  3.5 - 3.8 

17.1 The Problems with Nonrecursive Systems 
 
This chapter contains a mixture of ideas extended from the Chapters on Regression, in particular 
Chapter 5 and 6, and the chapters on covariance structure, in particular 9 and 10.  To anticipate a 
theme of this chapter, econometricians have come up with a variety of ways to use the basic least 
squares philosophy to look at models with latent variables and complex causal structures.  In this 
section we are concerned with nonrecursive systems, with equations of the form y = By + Γx + ζ, 
where V(ζ) is not diagonal, or it is impossible to arrange the sequence of y variables such that B is 
lower triangular.  To illustrate the problems caused by nonrecursion, we start with a deceptively 
simple two equation system:  
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where y1 represents the expenditures on our product category, y2 is income, and x1 is all other 
expenditures, including savings.  As we did in Chapter 10, we are dropping any subscript that 
references the individual observation in this section.  However, the reader should keep in mind 
that ζ1 is a random input to the model, and varies from one observation to the next.  The second 
equation is known as an identity, since there is no error term.  If we were to assume that V(ζ1) = 
σ

2
I, can we use the OLS approach of Chapter 5?  Unfortunately not, since problems arise due to 

the covariance between y2 and ζ1.  This becomes clear when we substitute the y1 equation into the 
y2 identity:  
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If we assume that E(ζ1) = 0 then we can say  
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which means, by the definition of variance  [Equation (4.7)], we get:  
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where we get to the second line above since E(ζ1) = 0.  Now, substituting the results of Equation 
(17.2) and Equation (17.3) into the line above, we get  
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Thus, y2, which functions as an independent variable in the equation for y1, is correlated with the 
error for that equation, ζ1.  This is a no-no.  In this situation the usual least squares estimator β̂ is 
not consistent [consistency is defined in Equation (5.11), but see Johnson p 281-2 for a proof].   
 
There are three solutions to this problem.  First, there is what econometricians call Full 
Information Maximum Likelihood which is basically the covariance structure model covered in 
Chapter 10.  Estimating a nonrecursive system using coviarance structural models can be tricky 
however.  Second, there is what is known as Indirect Least Squares which takes advantage of 
reduced form, covered elsewhere [Equation (10.6)]:  
 
 y = By + Γx + ζ 
 
 y - By = Γx + ζ 
 
 (I - B) y = Γx + ζ 
 
 y = (I - B)

-1
Γx + (I - B)

-1
ζ 

 
 y = Gx + e 
 
We can use OLS to estimate the elements in .Ĝ  The major problem here is that unless the model is 
just identified, with exactly the right number of unknowns, you cannot recover the structural 
parameters of theoretical importance in B and Γ.   
 
Third, there is a technique called Two Stage Least Squares and we will now cover that.   

17.2 Two Stage Least Squares 
 
The basic strategy of Two Stage Least Squares, sometimes called 2SLS, is to replace y2 with 2ŷ in 
Equation (17.1) above.  To discuss the technique further, we need to revert to the notational 
convention of Chapters 5, 6 and 8 which explicitly makes reference to individual observations.  
Rather than refer to a particular endogenous variable as y2, lets say, it is now a particular column 
of the Y matrix which has n rows, one row for each observation.  To get the discussion started, we 
introduce some key vectors and matrices:  
 

Array Order       Description 
y·1 n · 1 Endogeneous variable of interest 
Y2 n · (p-1) Other endogenous variables in the equation for y·1 
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β2 (p-1) · 1 Structural parameters for Y2 
X1 n · k1 Exogenous variables in equation for y·1 
γ K1 · 1 Structural parameters for X1 
ζ··1 n · 1 Error in the equation for y·1 

 
 
The model looks like  
 
 y·1 = Y2 β2  +  X1β1 +  ζ··1 
 
 
Now we define the full set of exogenous variables as ].[ 21 XXX =  .  In stage 1 we regress Y2 
on X to produce:  
 
 2

1
2 )(ˆ YXXXXY ′′= − . 

 
 In stage 2 we regress y·1 on 2Ŷ and X1. This produces a formula for the unknowns as below:  
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′
′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′′
′′

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅

⋅

−

11

12

1

1121

12222
ˆ

ˆ
ˆˆˆ

ˆ

ˆ

yX
yY

XXYX
XYYY

γ
β . 

 
While Y2 may be correlated with ζ··1 we expect that 2Ŷ is not.  It is not literally necessary to 
execute two stage least squares in two stages.   Instead you can use  
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or define Y2 = 2Ŷ + E2 so that  
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Now rewriting,  
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For k = 0 we have OLS and for k = 1 we have 2SLS.  There is a technique called Limited 
Information Maximum Likelihood in which k is itself estimated.   

17.3 Econometric Approaches to Measurement Error 
 
We begin by noting that measurement error in the y vector is not a problem for regression.  
Assume the real model is  
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 eXβy +=~  
 
where y~ is the true value of the dependent variable vector.  Instead, unfortunately, we observe  
 
 δyy += ~  
 
where δ, in general, is not a null vector.  We can write the true model  
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so that we just get a slightly different error term.  Unless Cov(δ, X) ≠  0 we will be OK.  Now, 
however, lets contemplate what happens when there is measurement error on the x side.  Imagine 
that we have the true model  
 
 eβXy +=

~  
 
but we observe  
 
 FXX +=

~  (17.4) 
 
instead.  Rewriting the true model, we get  
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In this case we find out that the Cov(X, Fβ) is not going to vanish since F is a component of X.  
Thus the error and the independent variables are correlated and the OLS estimator is not 
consistent.  We can get around this problem using a technique called Instrumental Variables.  We 
need to find a set of instruments, X(i),  that are independent of both the error vector e and the errors 
in the X-variables, F.  We then estimate β below such that  
 
 yXXX )i(

1
)i()i( )(ˆ ′′= −β  

 
and )i(β̂ will then consistently estimate β.  From time to time we might use Z with 1's and -1's from 
a median split of the x variables.   
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17.4 Generalized Least Squares 
 
GLS estimation has been discussed in Sections 6.8, 12.4 and 13.3.  Here we review and further 
develop the concept of GLS with an eye to applying it to data that are collected across time and so 
cannot be considered independent.  In the basic linear model,  
 
 y = Xβ + e, 
 
in this section we will assume that e ~ N(0, σ

2
V) where in general, V ≠  I.  Regardless as to the 

distribution of e, if we estimate  
 
 ,)(ˆ 1 yXXXβ ′′= −  
 
we find that ,)ˆ(E ββ = but this estimator no longer produces the best, or smallest, variance, ).ˆ(V β  
Assuming that V is of full rank (see Section 3.7), V

-1
 exists and we can decompose it in the 

manner of Equation 3.38) such that  
 
 V = P′P.   
 
Using P to premultiply the linear model, we get  
 
 Py = PXβ + Pe or 
 
 y* = X*β + e*.   
 
What are the properties of the new error term, e*?  According to Theorem (4.9) we have  
 
 V(e*) = P[σ

2
V] P′ 

 
 = σ

2
P[P′P]

-1
P′ 

 
and since V is of full rank, P is square and also of full rank so we can say that  
 
 V(e*) = σ

2
P P

-1
 (P′)

-1
P′ = σ

2
I. 

 
While we cannot believe in the Gauss-Markov assumption with e, we can with e*!  Rather than 
minimizing e′e as in OLS, we should minimize  
 
 e*′e* = eP′Pe = e′V

-1
e 

 
instead.  Doing so, we pick our objective function as  
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In order to minimize f, we should set 0β =∂∂f and solve for β, as we will now do: 
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and of course we end up with the usual formula, but using the transformed data matrices X* and 
y*.  Substituting back PX = X* and Py = y*, we have  
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The variance of this estimator is  
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This is all fine and dandy, but since V contains
2

)1n(n + unique elements, it is necessary that most 

of them be known a priori.  But there is another identification issue.  Since V(e) = σ
2
V, we cannot 

uniquely identify both σ
2
 and the elements of V.  That this is so can be seen by simply multiplying 

σ
2
 by some value a and then dividing all of the elements of V by a and the model is unchanged. 

What we do is to set Tr(V) = Tr(I) = n.  
 
We can estimate σ

2
 using  
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where  
 
 )ˆ(V)ˆ(SS 1

Error βXyβXy −′−= − . 
 
We can construct t-statistics that allow us to test hypotheses of the form  
 
 H0: βi = 0  
 
using the ith diagonal element of s

2
(X′V

-1
X)

-1
 in the denominator to create a t.  One can also test 

one degree of freedom hypotheses such as  
 
 a′β = c  
 
using  
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and for more complex hypotheses of the form  
 
 H0: Aβ - c = 0  
 
we use  
 
 )ˆ(])([)ˆ(SS 111
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to construct an F ratio numerator (with degrees of freedom equal to the number of rows in A), with 
s

2
 in the denominator (with n - k degrees of freedom).   

 
One area that we can apply GLS to occurs when the error in a regression model is not independent 
because the data are collected over time, leading to autocorrelated error.  This may  happen if we 
are analyzing the behavior of a particular firm, a particular store, category sales, purchases in a 
particular geographic region, and in many other cases in marketing where we look at data not 
collected across independent subjects.  The next section speaks to that application of GLS.  
 

17.5 Autocorrelated Error 
 
When we collect data over time, rather than across a set of independent individuals, we run the 
risk that the error from observations that are closer together in time will be more closely related 
than a pair of errors that are farther apart from time.  For example, looking at industry-wide sales 
of motor homes, we may fail to include every possible exogenous factor that there could be in a 
model for such sales.  In fact, unless our model fits without error, it must be the case that we have 
omitted some important independent variables.  Now, if any of those independent variables that 
did not find their way into our regression equation vary in a systematic way over time, for 
example, the weather, or consumer confidence, then the errors in our regression equation will also 
vary systematically over time.   Of course, that would violate the Gauss-Markov assumption and 
necessitate some counter measure.  Such as GLS.  To begin to sketch this out, consider 
observation t on the dependent variable and the model for it,  
 
 ttt eβxy +′= ⋅  (17.5) 
 
where, needless to say, t⋅′x  represents the t-th row of the matrix of independent variables, X.  
Given the argument in the preceding paragraph, we note that values of et are not independently 
distributed, but rather, adjacent observations follow the model   
 
 et = ρet-1 + εt. (17.6) 
 
In this context, the values εt represent an error for the error, if you will. We would also be remiss if 
we did not point out that a requirement of the model is that |ρ| < 1.  The distribution of the εt is 
characterized as  
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 εt ~  N(0, ),2Iσ  (17.7) 
 
which is to say that the the εt, unlike the et, are independently distributed.  They behave like a 
white noise process, in summary. Repeating our model for the error,   
 
 t1tt ee ε+ρ= −  (17.8) 
 
we see that, since et-1 appears in the right hand side, the model for et-1 would contain et-2 in it.  
Making that obvious substitution, we get  
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At this point the pattern should be obvious.  Continuing the process of substitution, we end up 
with  
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This last equation will look quite familiar if you have looked at Equation (15.17) or (18.15), being 
an infinite series.  Now we wish to find out the expectation of the error.  To determine the 
expectation of et from Equation (17.9), we keep in mind that the expectation of a sum is equal to 
the sum of the expectations  [Equation (4.4)], and  that therefore  
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since ρ is a constant parameter that describes the population and by assumption E(ei) = 0 for all i.  
Now we wish to figure out the variance of et, that is V(et) = E[et - E(et)]

2
 according to Equation 

(4.7).  Given that E(et) = 0, which we have just shown in Equation (17.10), we will only need to 
figure out ).e(E 2

t  That will be made easier by recalling that all cross terms of the form E(εt, εt-j) 
will vanish as the εt are presumed independent, and that a

0
 = 1 for any value a.  So, squaring the 

second line of Equation (17.10) we have  
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So in the above equation we have an infinite series of the form 1 + ρ

2
 + ρ
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 + ···, call it s such that  
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so that  
 

 .
1

1s 2ρ−
=    (17.11)  

 
Putting all of this together, we conclude that  
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To explore the covariances between et and et-j , we begin with j = 1.  By definition, the covariance 
between et and et-1 is given by  
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Looking at the right hand side of that equation, we will factor the ρ that appears in the left 
parentheses to give us  
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Now, the two terms in the two parentheses on the right hand side are identical.  We can write them 
as a single term squared.  What's more, you will notice an εt all alone on the left of the right hand 
side.  Its expectation is zero, and since there are no other values εt on the right hand side, the 
covariance of it and every other term will be zero.  It thus vanishes without a trace. Rewriting, that 
gives us  
 
 ].)[(E)ee(E 2
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2t1t1tt L+ερ+ρε+ερ= −−−−  (17.13) 
 
You will note that since ρ is a constant it can pass through the expectation operator [for a review, 
take a peek at Equation (4.5)].  Again, we remind you that E(εt, εt-1), that is the covariance between 
two different values of the εt are zero by the assumption of Equation (17.7).   However, just 
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because the εt are independent does not mean that the et are.  In fact, looking at Equation (17.13), 
we are almost ready to make a conclusion about the autocovariance of the et.   The part in 
parentheses is just the model for the et, i.e. Equation (17.8).  Its expectation squared must then be 
the variance of et, so that  
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Following the same reasoning we find that the  
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Summarizing, we can say that the variance matrix of the et is VV 2
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Thus the GLS approach only needs to estimate two error related parameters, ρ and .2

εσ   In the 
Cochrane-Orcutt Iterative Procedure we pick a starting value for ρ, calculate 

,)(ˆ 11 yVXXVXβ −− ′′=  then pick ρ in such a way as to minimize e′e while holding β̂ fixed, and 

then re-estimate β̂ holding ρ fixed.  One alternates between  those two least squares steps until 
there is convergence.  More general specifications of the nature of the error are possible.  While in 
this section we have discussed a single autoregressive parameter, in much the same way that we 
talk about an AR(1) model in Section 18.4, just like with ARIMA models, you can have AR(2) or 
other processes.   
 
17.6 Testing for Autocorrelated Error 
 
Durbin and Watson (1950) proposed using  
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as a test statistic for autocorrelated residuals.  Here, the hypothesis being tested is H0: ρ = 0.  For 
positive autocorrelation the numerator will be small, while for negative autocorrelation the 
numerator will tend to be large.  There is an upper limit (du) and a lower limit (dl) for this statistic 
such that  
 
 if d < dl, reject H0, 
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 if d > du, fail to reject H0,  and if  
 
 if dl < d < du 
 
the test is inconclusive.   
 

17.7 Lagged Variables 
 
Suppose it is the case that consumers do not immediately react to a change in a marketing variable.  
In that case we would expect to see a relationship like the one below,  
 
 yt = β0 + xt-1β1 + et 
 
or perhaps their reaction begins immediately but is distributed across several time periods, as in  
 
 yt = β0 +  xt-1β1 + xt-2β2  + ···xt-sβs + et. 
 
This is reasonable under many real life marketing situations.  For example, the consumer may not 
immediately learn about a change in the market.  Or perhaps, they are encumbered in their actions 
by inventory already on hand. However realistic this may be, there are unfortunately some 
problems with this approach.  For one thing, what should "s" be?  For another, we will be losing a 
degree of freedom for each lag, which is to say that the model is not very parsimonious.  Finally, 
successive values of x might well be highly correlated, so that multicollinearity rears its head.  
What we can do is impose some sort of a priori structure on the values of the βi.  A graph of some 
possible structural assumptions is below:  
 

  
Of course, any function can be represented by a polynomial of sufficiently high degree, fact 
exploited in ANOVA in Section 7.6.  We can approximate, for example, a system with s = 7 lags 
with a polynomial of the third degree:  
 
 β0 = a0 
 
 β1 = a0 + a1 + a2 + a3 
 
 β2 = a0 + 2a1 + 4a2 + 8a3 
 
 β3 = a0 + 3a1 + 9a2 + 27a3  
 
 ··· =    ··· 
 
 β7 = a0 + 7a1 + 49a2 + 343a3  
 

βi 

i 
0 s 

βi

i 
0 s 

βi

i 
0 s 
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The reader will perhaps recognize that the coefficients for the a values are constant in the first 
column, linear in the second, quadratic in the third and cubic in the fourth.  If we substitute these 
equations back into the model for s = 7, i. e.  
 
 yt = β0 +  xt-1β1 + xt-2β2  + ···xt-7β7 + et, 
 
we get after collecting the ai terms 
 
 yt = β0+ (xt + xt-1 + xt-2 + ··· x t-7)a0 +  
 (xt + 2xt-1 + 3xt-2 + ··· + 7x t-7)a1 +  
 (xt + 4xt-1 + 9xt-2 + ··· + 49x t-7)a2 +  
 (xt + 8xt-1 + 27xt-2 + ··· + 343x t-7)a3 + et (17.17) 
which is equivalent to an model with  
 
 yt = β0+  w0a0 + w1a1 + w2a2 + w3a3 + et, (17.18) 
 
where w0 = xt + xt-1 + xt-2 + ··· x t-7, and the other w values are defined as above in Equation 
(17.17).  This is known as Almon's Scheme.  If we define  
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using the coefficients for the x's, then  
 
 KWWKβ ′′σ= −12 )()ˆ(V  (17.19) 
 
lets you test the value s of the maximum lag, while  
 
 12 )()ˆ(V −′σ= WWa  (17.20) 
 
lets you test the degree of the polynomial required to represent the lag structure.   
 
While Almon's Scheme is quite compelling, another approach was proposed by Koyck, who used 
a geometric sequence.  Koyck started with the infinite sequence 
 
 yt = xtβ0 +  xt-1β1 + xt-2β2  + ··· + et. (17.21) 
 
Now, assume that the β values are all of the same sign, and that  
 

 .c
0i

i ∞<=β∑
∞

=

 (17.22) 

 
We now introduce the backshift operator, B, which is also prominently featured in Chapter 18.  
We define  
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 Bxt = xt-1. (17.23) 
 
Of course, one can also say  
 
 BBxt = B

2
xt = xt-2 (17.24) 

 
and so forth with B

j
xt = xt-j.  Given our two assumptions of Equations (17.21) and (17.22), we can 

rewrite the model as  
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equation as  
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Now we introduce the major assumption of the Koyck scheme.  The w's have a geometric 
relationship to each other as in  
 
 wi = (1 - λ)λ

i 
(17.25) 

 
where 0 < λ < 1.  In that case  
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The fraction on the right hand side of the line immediately above is a consequence of the logic 
worked out in Equation (17.11) where we previously worked out the solution to an infinite series 
just like the one above.  The upshot is that we can now write the model  
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As you can see, Koyck's scheme is characterized by autocorrelated error and lagged endogenous 
variables on the right hand side.  Why would that be?  Is there any marketing theory in which that 
would make sense?  We will be finding out shortly.   
 

17.8 Partial Adjustment by Consumers 
 
The partial adjustment model posits that the optimal value of the y variable, y*, might depend on 
x.  For example, y could be an amount spent on our brand and x is income.  As the consumer 
wants to make an optimal choice, and if the relationship is linear, we would have  
 
 ,xy~ 1t0t β+β=  (17.27) 
 
but due to less than perfect information about the market, inventory considerations, inertia, or the 
cognitive costs of change, the consumer can only adjust a certain proportion of the way from his or 
her previous value, yt-1, to the optimal value at .y~t   In mathematical terms,  
 
 t1tt1tt e)yy~(yy +−γ=− −−  (17.28) 
 
with 0 < γ < 1. Substituting Equation (17.27) into Equation (17.28), we see that  
 
 t1tt10t ey)1(xy +γ−+γβ+γβ= −  
 
which bears a resemblance to Koyck's scheme, only here we have an intercept, and the error is not 
autocorrelated.   
 

17.9 Adaptive Adjustment by Consumers 
 
Another way that a similar equation may come about is through consumers adapting their 
expectations.  Define tx~  as the expected level of x, and assume that some key consumer behavior 
depends on .x~ t   The value tx~  could be the best guess of the price of a good, something to do with 
its availability in the market, and so forth.  The consumer's behavior should then appear as below  
 
 .ex~y t1t0t +β+β=  (17.29) 
 
Now if we assume that the expectations are updated by a fraction of the discrepancy between the 
current observation and the previous expectation, we get  
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Define λ = 1 - δ.  Then starting with the last line of the above equation,  
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Finally, substituting this result into the model of Equation (17.29), we find out that  
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which is the same as the Koyck Scheme of Equation (17.26). As far as estimating these models, 
OLS is not consistent [see Equation (5.11) for a definition of consistency] if there is autocorrelated 
error.  You can use a two-stage estimator substituting 1tŷ − for yt-1.  You can also use xt-1 as an 
instrument for yt-1.   

17.10 Pooling Time Series and Cross Section Data 
 
Suppose we had for a particular sales region, call it region 1, the model  
 
 )1()1()1()1( eβXy +=  
 
where y

(1)
 is the T · 1 vector of observations on the response of the market in that region and X

(1)
 is 

a matrix of marketing instruments including such factors as advertising effort, and so forth.  In 
region 1 we might have k1 such instruments. Data have been collected from time period 1 through 
time period T and analogously, in region 2, we have done the same thing but with k2 different 
independent variables:  
 
 .)2()2()2()2( eβXy +=  
 
These two regression are only seemingly unrelated because we would expect 0)e,e(Cov )2(

t
)1(

t ≠  
as long as the two regions are interconnected economically.  In point of fact, there are hardly two 
regions left on Earth that are not interconnected economically.  The covariance identified above is 
called contemporaneous for obvious reasons.  Alternating the regions so as to keep 
contemporaneous observations next to each other as we move from row to row, we could combine 
the two models as below:  
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so that our model is now simply y = Xβ + e, with y having n times T rows, assuming n regions and 
T observations across time.  For now we will continue to assume that n = 2. With 
contemporaneous covariance we can model the error covariance matrix as  
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where each null matrix and each copy of Σ is 2 · 2, and the Kronecker product operator ⊗ is 
defined in Section 1.10 (and elaborated on in Section 8.6).  In fact, we might note the similarity 
between this and the error structure for the Multivariate General Linear model in Equation (8.36) 
and Equation (8.37).  The difference is that in the General Linear Model, all dependent variables 
have the same set of independent variables.  In this case, the seemingly unrelated model, we will 
use GLS, in which the error matrix, usually notated V, will be I ⊗ Σ as you can see now 
 
 yΣIXXΣIXβ 111 )(])([ˆ −−− ⊗′⊗′=  (17.30) 
 
and  
 
 .])([)ˆ(V 11 −−⊗′= XΣIXβ  
 
We can apply a two step procedure in which we use OLS and estimate S = ,Σ̂ then we apply GLS 
using S as a substitute for Σ in Equation (17.30).  One could also use Maximum Likelihood.   
 
Another way to deal with the pooling problem is to use dummy variables, as we did in Section 7.3 
in Equation (7.5) in the context of the analysis of variance.  Of course, one could also use effect or 
orthogonal coding.  If we set up dummies for each time period and each region, this purges the 
dependent variable of all variance associated with regions and time.  This is a somewhat drastic 
approach, since some of the variance of interest will get thrown out with the bath water.  A less 
drastic approach is to treat time and cross-sections like a random effect in ANOVA.  Suppose that 
our error term is composed of  
 
 eij = αi + ϕt + εit 
 
with V(αi) = ,2

ασ V(ϕt) = 2
ϕσ  and V(εit) = .2

εσ  Given that the data from each region are next to 
each other in the y and e vectors,  
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and we can apply a first step ANOVA to estimate the random variances 2

ασ and 2
ϕσ while in the 

second step we use those estimates in GLS.  Parks has proposed a model like Zellner's seemingly 
unrelated regressions but with autoregressive error, and De Silva has suggested a model with 
variance components for the cross sections but autoregression for the time component.  
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